Journal of Sol-Gel Science and Technology

, Volume 56, Issue 1, pp 7–18 | Cite as

Preparation and photophysical properties of monomeric liquid-crystalline azo-dyes embedded in bulk and film SiO2-sonogel glasses

  • V. Torres-Zúñiga
  • O. G. Morales-SaavedraEmail author
  • E. Rivera
  • R. Castañeda-Guzmán
  • J. G. Bañuelos
  • R. Ortega-Martínez
Original Paper


SiO2-based bulk and film sol–gel hybrid materials were prepared with a family of novel liquid crystalline (LC) amphiphilic azo-dyes bearing oligo(ethylene glycol) spacers (named here RED-PEG-n, n = 2, 3, 4, 6). The catalyst-free-sonogel route was implemented to produce optically active hybrid monoliths and spin-coated films with these materials. Comprehensive morphological, thermal, photo-acoustic and spectroscopic sample characterizations were performed in order to elucidate the physical properties of these novel compounds within the sonogel environment. Film samples were also studied via the nonlinear optical (NLO) second harmonic generation (SHG)-Maker fringes technique. Results show that the chromophores were homogeneously embedded within the highly pure SiO2-sonogel network, showing a clear thermotropic mesogenic behavior. The push–pull structure of the implemented azo-dyes allowed effective electrically-induced monomeric alignment within the sonogel confinement; thus, stable quadratic NLO-SHG-activity in the organic–inorganic film samples was achieved despite the lack of glass transition temperature (T g ) of the guest LC-compounds.


Azo-dyes Liquid crystals Thin films Sol–gel Sonogel Hybrid materials Optical materials Nonlinear optics 



The authors are grateful to Dr. Neil Bruce for English revision of the manuscript. This work was supported by projects SEP-CONACyT (Grant: U-49846-F) and PAPIIT-DGAPA-UNAM (Grant: IN-115508). O G Morales-Saavedra also acknowledges financial support from the DAAD academic organization (Germany). E. Rivera thanks PAPIIT-DGAPA-UNAM (Grant: IN-105610).


  1. 1.
    Boyd RW (1992) Nonlinear Optics. Academic Press, San Diego, CAGoogle Scholar
  2. 2.
    Saleh BEA, Teich MC (1991) Fundamentals of Photonics. Wiley, New YorkCrossRefGoogle Scholar
  3. 3.
    Messier J (1991) Organic Molecules for Nonlinear Optics and Photonics. Kluwer Academic Publishers, NetherlandsGoogle Scholar
  4. 4.
    Prasad PN, Williams DJ (1991) Introduction to nonlinear optical effects in molecules and polymers. Wiley, New YorkGoogle Scholar
  5. 5.
    Rao CNR (ed) (1993) Chemistry of advanced materials. Blachaell Scientific Publications, LondonGoogle Scholar
  6. 6.
    Lindsay GA, Singer KD (Ed) (1995) Polymers for second order nonlinear optics, ACS symposium series no 601, Washington, USAGoogle Scholar
  7. 7.
    Tredgold RH (1995) J Mater Chem 5:1095–1106CrossRefGoogle Scholar
  8. 8.
    Hall RA, Hara M, Knoll W (1996) Langmuir 12:2551–2555CrossRefGoogle Scholar
  9. 9.
    Lupo D, Ringsdorf H, Schuster A, Seitz M (1994) J Am Chem Soc 116:10498–10506CrossRefGoogle Scholar
  10. 10.
    Rau H, In Rabek JK (Eds) (1990) Photochemistry and photophysics, vol 2. CRC Press, Boca Raton, p 119Google Scholar
  11. 11.
    Yesodha SK, Pillai CKS, Tsutsumi N (2004) Progr Polym Sci 29:45–74CrossRefGoogle Scholar
  12. 12.
    Natansohn A, Rochon P (2002) Chem Rev 102:4139–4175CrossRefPubMedGoogle Scholar
  13. 13.
    Kasha M (1963) Rad Res 20:55–70CrossRefGoogle Scholar
  14. 14.
    Rivera E, Belletête M, Natansohn A, Durocher G (2003) Can J Chem 81:1076–1082CrossRefGoogle Scholar
  15. 15.
    Rivera E, Carreón-Castro MP, Buendía I, Cedillo G (2006) Dyes Pigments 68:217–226CrossRefGoogle Scholar
  16. 16.
    Rivera E, Carreón-Castro MP, Rodríguez L, Cedillo G, Fomine S, Morales-Saavedra OG (2007) Dyes Pigments 74:396–403CrossRefGoogle Scholar
  17. 17.
    He XH, Zhang HL, Yan DL, Wang X (2003) J Polym Sci Polym Chem 41:2854–2864CrossRefGoogle Scholar
  18. 18.
    Tian YQ, Watanabe K, Kong XX, Abe J, Iyoda T (2003) Macromolecules 36:39–47Google Scholar
  19. 19.
    Saito M, Shimomura T, Okumura Y, Ito K, Hayakawa R (2001) J Chem Phys 114:1–3CrossRefADSGoogle Scholar
  20. 20.
    Shimomura T, Funaki T, Ito K (2002) J Incl Phenom Macroc Chem 44:275–278CrossRefGoogle Scholar
  21. 21.
    Zheng PJ, Wang C, Hu X, Tam KC, Li L (2005) Macromolecules 38:2859–2864CrossRefADSGoogle Scholar
  22. 22.
    Hu X, Zheng PJ, Zhao XY, Li L, Tam KC, Gan LH (2004) Polymer 45:6219–6225CrossRefGoogle Scholar
  23. 23.
    Takashima Y, Nakayama T, Miyauchi M, Kawaguchi Y (2004) Chem Lett 33:890–891CrossRefGoogle Scholar
  24. 24.
    Ikeda T, Ooya T, Yui N (1999) Polym J 31:658–663CrossRefGoogle Scholar
  25. 25.
    Tung CH, Wu LZ, Zhang LP (2003) Acc Chem Res 36:39–47CrossRefPubMedGoogle Scholar
  26. 26.
    Razna J, Hodge P, Kucharski S (1999) J Mater Chem 9:1693–1698CrossRefGoogle Scholar
  27. 27.
    Wang Y, Wang CS, Wang XJ, Guo Y, Xie B, Cui Z, Liu L, Xu L, Zhang D, Yang B (2005) Chem Mater 17:1265–1268CrossRefGoogle Scholar
  28. 28.
    Morales-Saavedra OG, Mata-Zamora ME, Rivera E, Bañuelos JG, Saniger JM (2008) J Dyes Pigments 78:48–59CrossRefGoogle Scholar
  29. 29.
    Rivera E, MdP Carreón-Castro, Salazar R, Huerta G, Becerril C, Rivera L (2007) Polymer 48:3420–3428CrossRefGoogle Scholar
  30. 30.
    Brinker CJ, Scherer GW (1990) Sol–gel science. Academic Press, San DiegoGoogle Scholar
  31. 31.
    Suslick KS (1990) Science 247:1373–1445CrossRefGoogle Scholar
  32. 32.
    de la Rosa-Fox N, Esquivias L, Craievich AF, Zarzycki J (1990) J Non-Cryst Solids 121:211–215CrossRefGoogle Scholar
  33. 33.
    Suslick KS, Hammerton DA, Cline RE Jr (1986) J Am Chem Soc 108:5641–5642CrossRefGoogle Scholar
  34. 34.
    Noltingk BE, Neppiras EA (1950) Proc Phys Soc B63:674–685ADSGoogle Scholar
  35. 35.
    Morales-Saavedra OG, Rivera E, Flores-Flores JO, Castañeda R, Bañuelos JG, Saniger JM (2007) J Sol–Gel Sci Technol 41:277–289CrossRefGoogle Scholar
  36. 36.
    Sánchez Vergara ME, Morales-Saavedra OG, Ontiveros-Barrera FG, Torrez-Zúñiga V, Ortega-Martínez R, Ortiz Rebollo A (2009) Mat Sci Eng B 158:98–107CrossRefGoogle Scholar
  37. 37.
    Ocotlán-Flores J, Saniger JM (2006) J Sol–Gel Sci Technol 39:235–240CrossRefGoogle Scholar
  38. 38.
    Giacometti JA, Fedosov SN, Costa MM (1999) Braz J Phy 29:269–280Google Scholar
  39. 39.
    Maker PD, Terhune RW, Nisenoff M, Savage CM (1992) Phys Rev Lett 8:21CrossRefADSGoogle Scholar
  40. 40.
    Shen YR (1984) The principles of nonlinear optics. Wiley, New YorkGoogle Scholar
  41. 41.
    Morales-Saavedra OG, Castañeda R, Ocotlan-Flores J, Román-Moreno C, Ortega-Martínez R, Pelzl G (2008) Mol Cryst Liq Cryst 488:56–73CrossRefGoogle Scholar
  42. 42.
    Torres-Zúñiga V, Castañeda-Guzmán R, Santiago J, Morales-Saavedra OG, Zepahua-Camacho M (2008) Opt Express 16:20724–20733CrossRefADSPubMedGoogle Scholar
  43. 43.
    Morales-Saavedra OG, Castañeda R, Bañuelos JG, Carreon-Castro MPD (2008) J Nanosci Nanotech 8:3582–3594CrossRefGoogle Scholar
  44. 44.
    Pérez-Martínez AL, Ogawa T, Aoyama T, Wada T (2009) Opt Mater 31:912–918CrossRefADSGoogle Scholar
  45. 45.
    Yamaoka K, Charney E (1972) J Am Chem Soc 94:8963–8974CrossRefPubMedGoogle Scholar
  46. 46.
    Ju JJ, Kim J, Do JY, Kim MS, Park SK, Park S, Lee MH (2004) Opt Lett 29:89–91CrossRefADSPubMedGoogle Scholar
  47. 47.
    Mortazavi MA, Knoesen A, Kowel ST, Higgins BG, Dienes A (1989) J Opt Soc Am B 6:733CrossRefADSGoogle Scholar
  48. 48.
    Morales-Saavedra OG, Castañeda L (2007) Opt Commun 269(2):370–377CrossRefADSGoogle Scholar
  49. 49.
    Morales-Saavedra OG, Ontiveros-Barrera FG, Torres-Zúñiga V, Guadalupe-Bañuelos J, Ortega-Martínez R, Rivera E (2009) Smart Mater Struct 18: art. no. 085024Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • V. Torres-Zúñiga
    • 1
  • O. G. Morales-Saavedra
    • 1
    Email author
  • E. Rivera
    • 2
  • R. Castañeda-Guzmán
    • 1
  • J. G. Bañuelos
    • 1
  • R. Ortega-Martínez
    • 1
  1. 1.Nonlinear Optics Lab. Centro Ciencias Aplicadas y Desarrollo TecnológicoUniversidad Nacional Autónoma de México, CCADET-UNAMMexicoMéxico
  2. 2.Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de México, IIM-UNAMMexicoMéxico

Personalised recommendations