Photoluminescence in Er3+/Yb3+-doped silica-titania inverse opal structures

  • M. Clara GonçalvesEmail author
  • Luis M. Fortes
  • Rui M. Almeida
  • Alessandro Chiasera
  • Andrea Chiappini
  • Maurizio Ferrari
  • Shivakiran Bhaktha
Original paper


Er3+ photoluminescence (PL) and Yb3+ → Er3+ energy transfer (ET) phenomena in the near infrared (NIR) have been studied in three-dimensional (3-D) inverse opal (IO) structures synthesized by a colloidal/sol–gel route, starting with the deposition of polystyrene microsphere (235 nm and 460 nm diameter) direct opal templates by convective self-assembly, followed by infiltration of the interstices with Er3+/Yb3+-doped silica, titania and silica-titania sols and heat-removal of the polymeric template material. The crystalline quality of the IOs has been optimized through suitable substrate treatments, plus the control of temperature and humidity during deposition of the templates. The structural and optical properties of the 3-D opal and IO structures have been studied by field emission scanning electron microscopy and visible-NIR reflection spectroscopy, in order to assess the relationship between microstructure and the photonic properties obtained. Photonic bandgaps have been evidenced by the corresponding stop bands in the reflection spectra. The shape and the intensity of the Er3+ 4I13/2 → 4I15/2 transition at ~1.5 μm were modified in most IOs relatively to similar matrix deposits without a photonic crystal structure, particularly in the case of pure silica and titania IOs, where the PL peak narrowed and intensified. It was not possible at this stage to detect Yb3+ → Er3+ ET phenomena in the IOs structures.


Energy transfer Er/Yb co-doping Photonic crystal Inverse opal 



L. M. Fortes wishes to acknowledge FCT (Fundação para a Ciência e a Tecnologia) for the fellowship SFRH/BPD/34754/2007, A. Chiappini acknowledges PAT FaStFAL (2007-2010) and Shivakiran Bhatka acknowledges ITPAR Phase II (2008-2011) research project, area Nanophotonics. The authors also wish to thank Drª. Bárbara Martins for performing the DLS measurements and Drª Olinda Conde for help with the GIXRD measurements.


  1. 1.
    Yablonovitch E (1987) Phys Rev Lett 58:2059CrossRefPubMedADSGoogle Scholar
  2. 2.
    John S (1987) Phys Rev Lett 58:2486CrossRefPubMedADSGoogle Scholar
  3. 3.
    Yablonovitch E, Gmitter TJ, Meade RD, Rappe AM, Brommer KD, Joannopoulous JD (1991) Phys Rev Lett 67:3380CrossRefPubMedADSGoogle Scholar
  4. 4.
    Gaponenko SV, Prokofiev AV, Kapitonov AM, Bogomolov VN, Eychmuller A, Rogach AL (1998) JETP Lett 68:142CrossRefADSGoogle Scholar
  5. 5.
    Miguez H, Lopez C, Meseguer F, Blanco A, Vazquez L, Mayoral R, Ocaña M, Fornés V, Mifsud A (1997) Appl Phys Lett 71:1148CrossRefADSGoogle Scholar
  6. 6.
    McComb DW, Treble BM, Smith CJ, De La Rue RM, Johnson NP (2001) J Mater Chem 11:142CrossRefGoogle Scholar
  7. 7.
    Joannopoulos JD, Meade RD, Winn JN (1995) Photonic crystals: moulding the flow of light. Princeton University Press, PrincetonGoogle Scholar
  8. 8.
    Almeida RM, Portal S (2003) Curr Opin Solid State Mater Sci 7:151CrossRefGoogle Scholar
  9. 9.
    Almeida RM, Gonçalves MC, Portal S (2004) J. Non-Cryst Solids 562:345–346Google Scholar
  10. 10.
    Almeida RM, Gonçalves MC (2006) In: Balda R (ed) Sol–gel derived photonic band gap structures, photonic glasses. Research Signpost, Kerala, p 67Google Scholar
  11. 11.
    Yamane M, Asahara Y (2000) Glasses for photonics. Cambridge University PressGoogle Scholar
  12. 12.
    Portal S, Almeida RM (2004) Proc SPIE 5360:101CrossRefADSGoogle Scholar
  13. 13.
    Almeida RM, Marques AC (2006) J Non-Crystalline Solids 352:475CrossRefADSGoogle Scholar
  14. 14.
    Almeida RM, Marques AC, Chiasera A, Chiappini A, Ferrari M (2007) J Non-Crystalline Solids 353:490CrossRefADSGoogle Scholar
  15. 15.
    Fortes LM, Clara Gonçalves M, Almeida RM (2009) J Non-Cryst Solids 355:1189–1192CrossRefADSGoogle Scholar
  16. 16.
    Gonçalves MC, Brás J, Almeida RM (2007) J Sol-Gel Sci Techn 42:135CrossRefGoogle Scholar
  17. 17.
    Almeida RM (1999) J Non-Cryst Solids 259:176CrossRefADSGoogle Scholar
  18. 18.
    Almeida RM, Morais PJ, Marques AC (2002) Phil Mag B 82(6):707CrossRefADSGoogle Scholar
  19. 19.
    Pelli S, Bettinelli M, Brenci M, Calzolai R, Chiasera A, Ferrari M, Nunzi Conti G, Speghini A, Zampedri L, Zheng J, Righini G (2004) J. Non-Cryst Solids 372:345–346Google Scholar
  20. 20.
    Gonçalves RR, Carturan G, Zampedri L, Ferrari M, Montagna M, Chiasera A, Righini G, Pelli S, Ribeiro SJL, Messaddeq Y (1998) Appl Phys Lett 81(1):28CrossRefADSGoogle Scholar
  21. 21.
    Zampedri L, Ferrari M, Armellini C, Visintainer F, Tosello C, Ronchin S, Rolli R, Montagna M, Chiasera A, Pelli S, Righini G, Monteil A, Duverger C, Gonçalves RR (2003) J Sol-Gel Sci Techn 26:1033CrossRefGoogle Scholar
  22. 22.
    Gonçalves MC, Fortes LM, Almeida RM, Chiasera A, Chiappini A, Ferrari M (2009) Opt Mat 31:1315–1318CrossRefGoogle Scholar
  23. 23.
    Lopez C, Vazquez L, Meseguer F, Mayoral R, Ocana M, Miguez H (1997) Superlattices Microstruct 22:399CrossRefADSGoogle Scholar
  24. 24.
    Nunzi Conti G, Chiasera A, Brenci M, Ferrari M, Pelli S, Sebastiani S, Tosello C, Righini GC (2006) J. Non-Cryst Solids 352:2585–2588CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • M. Clara Gonçalves
    • 1
    Email author
  • Luis M. Fortes
    • 1
  • Rui M. Almeida
    • 1
  • Alessandro Chiasera
    • 2
  • Andrea Chiappini
    • 2
  • Maurizio Ferrari
    • 2
  • Shivakiran Bhaktha
    • 2
    • 3
  1. 1.Departamento de Engenharia de Materiais/ICEMSInstituto Superior Técnico/TULisbonLisbonPortugal
  2. 2.CSMFO LabIFN-CNR, Instituto di Fotonica e NanotecnologiePovo, TrentoItaly
  3. 3.Dipartimento di FisicaUniversità di TrentoTrentoItaly

Personalised recommendations