Journal of Sol-Gel Science and Technology

, Volume 54, Issue 2, pp 238–242

Micro structural investigations on TNT and PETN incorporated silica xerogels

  • S. V. Ingale
  • P. U. Sastry
  • A. K. Patra
  • R. Tewari
  • P. B. Wagh
  • Satish C. Gupta
Original Paper


Silica xerogels incorporated with trinitrotoluene (TNT) and pentaerythritoltetranitrate (PETN) were synthesized using sol–gel method. Tetramethoxysilane was used as precursor for silica. TNT and PETN content in the resulted explosive/silica xerogel was varied ranging from 50 to 90%. Infra red spectra showed that explosives were retained in the silica xerogel matrix. Transmission electron microscopy (TEM) reveal that explosives particles were uniformly distributed in xerogel matrix and the size of the PETN and TNT particles are in the range 15–18 nm. Small angle x-ray scattering showed that the sizes of the pores in the silica matrix are in the range 25–13 nm. The particles of TNT and PETN occupy the pores in the matrix resulting in gradual reduction of pore-size affecting the surface characteristics of the pore-matrix interface. Understanding of the structure of aggregates of small particles thus produced could be useful to explain the properties shown by the fine explosives. Our study suggests that particle size of explosives in the nanometer range can be achieved using the sol–gel method.


Xerogel Explosives SAXS TEM 


  1. 1.
    Moulard H (1989) In: Proceedings of 9th Symposium (International) on Detonation, Portland, USA, p 18–24Google Scholar
  2. 2.
    Kneisl P, Brock KA (2006) US Patent Application: 20060272756, Class: 149092000Google Scholar
  3. 3.
    Pillai AGS, Sanhavi RR, Dayanandan CR, Joshi MM, Velapure SP, Singh A (2001) Propellants Explos Pyrotech 26:226–228CrossRefGoogle Scholar
  4. 4.
    Cave GA, Krotinger NJ, Jiccaleb JD (1949) Ind Eng Chem 41(6):1286–1290CrossRefGoogle Scholar
  5. 5.
    Patil MN, Gore GM, Pandit AB (2008) Ultrason Sonochem 15(3):177–187CrossRefPubMedGoogle Scholar
  6. 6.
    Teipel U, Forter-Barth U, Gerber P, Kraose HH (1997) Propellants Explos Pyrotech 22:165–169CrossRefGoogle Scholar
  7. 7.
    Simpson R, Lee R, Tillotson T, Hrubesh L, Swansiger R, Fox G (2005) United States Patent 6893518Google Scholar
  8. 8.
    Tilloston TM, Hrubesh LW, Simpson RL, Lee RS, Swansiger RW, Simpson LR (1998) J Non-Cryst Solids 225:358–363CrossRefADSGoogle Scholar
  9. 9.
    Schmidt PW, Height R (1960) Acta Cryst 13:480–483CrossRefGoogle Scholar
  10. 10.
    Clarkson J, Smith WE, Batchelder DN, Smith DA, Coatsc AM (2003) J of Mol Struct 648:203–214CrossRefADSGoogle Scholar
  11. 11.
    Wagh PB, Ingale SV (2002) Ceram Int 28:43–50CrossRefGoogle Scholar
  12. 12.
    Makashir PS, Kurian EM (1999) Propellants Explos Pyrotech 24:260–265CrossRefGoogle Scholar
  13. 13.
    Schmidt PW (1991) J Appl Cryst 24:414–435CrossRefGoogle Scholar
  14. 14.
    Debye P, Anderson HR Jr, Brumberger H (1957) J Appl Phys 28:679–683CrossRefADSGoogle Scholar
  15. 15.
    Hudson SD, Hutter JL, Nieh MP, Pencer J, Million LE, Wan W (2009) J Chem Phys 130:34903CrossRefGoogle Scholar
  16. 16.
    Schmidt PW, Anvir D, Levy D, Hohr A, Steiner M, Röll A (1991) J Chem Phys 94(2):1474–1479CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • S. V. Ingale
    • 1
  • P. U. Sastry
    • 2
  • A. K. Patra
    • 2
  • R. Tewari
    • 3
  • P. B. Wagh
    • 1
  • Satish C. Gupta
    • 1
  1. 1.Applied Physics DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Solid State Physics DivisionBhabha Atomic Research CentreMumbaiIndia
  3. 3.Materials Science DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations