Journal of Sol-Gel Science and Technology

, Volume 57, Issue 3, pp 269–278 | Cite as

Synthesis of hierarchical macro/mesoporous dicalcium phosphate monolith via epoxide-mediated sol–gel reaction from ionic precursors

  • Yasuaki Tokudome
  • Akira Miyasaka
  • Kazuki Nakanishi
  • Teiichi Hanada
Original Paper


Starting from calcium chloride dihydrate (CaCl2·2H2O), phosphoric acid (H3PO4), and poly(acrylic acid) (PAA) dissolved in a mixture of water and methanol (MeOH), dicalcium phosphate anhydrous (DCPA, CaHPO4) monoliths with co-continuous macropores and mesopores have been synthesized by the addition of propylene oxide. Macropores are formed as a result of phase separation, while mesopores as interstices between primary particles with the size of ca. 30 nm. Propylene oxide acts as a proton scavenger and leads to moderate pH increase in a reaction solution, which brings about gelation in several minutes. On the other hand, PAA acts as a crystal growth inhibitor as well as a phase separation inducer. The extensive crystal growth of DCPA is hindered by the addition of PAA which allows morphological control of the structure in micrometer range. Fourier transform infrared spectroscopy indicates that PAA and DCPA form composite via interaction between the carboxyl groups and the surface of crystals, and together form gel phase. The solvent phase, which is converted to macropores after evaporative drying, is mainly comprised of solvent. The degree of supersaturation in a reaction solution considerably influence on the crystallization process, and thereby, influences on the porous structure in nano- and micrometer ranges.


Dicalcium phosphate Macroporous Mesoporous Monolith Phase separation Propylene oxide 



The present work was supported by the Grant-in-Aid for Scientific Research (No. 20350094) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, and was partly supported by the Global COE Program “Integrated Materials Science” (No. B-09) of the MEXT, administrated by the Japan Society for the Promotion of Science (JSPS). Y. T. thanks the Grant-in-Aid for Fellow (No. 21-607) from JSPS. This work was partially carried out using facilities of Research Center for Low Temperature and Materials Sciences, Kyoto University.


  1. 1.
    Gash AE, Tillotson TM, Satcher JH Jr, Poco JF, Hrubesh LW, Simpson RL (2001) Chem Mater 13:999–1007CrossRefGoogle Scholar
  2. 2.
    Baumann TF, Gash AE, Chinn SC, Sawvel AM, Mawell RS, Satcher JH Jr (2005) Chem Mater 17:395–401CrossRefGoogle Scholar
  3. 3.
    Baumann TF, Kucheyev SO, Gash AE, Satcher JH Jr (2005) Adv Mater 17:1546–1548CrossRefGoogle Scholar
  4. 4.
    Gao YP, Sisk CN, Hope-Weeks LJ (2007) Chem Mater 19:6007–6011CrossRefGoogle Scholar
  5. 5.
    Gash AE, Satcher JH Jr, Simpson RL (2004) J Non-Cryst Solids 350:145–151CrossRefGoogle Scholar
  6. 6.
    Leventis N, Vassilaras P, Fabrizio EF, Dass A (2007) J Mater Chem 17:1502–1508CrossRefGoogle Scholar
  7. 7.
    Pettigrew KA, Long JW, Carpenter EE, Baker CC, Lytle JC, Chervin CN, Logan MS, Stroud RM, Rolison DR (2008) ACS Nano 2(4):784–790CrossRefGoogle Scholar
  8. 8.
    Zhang HD, Li B, Zheng QX, Jiang MH, Tao XT (2008) J Non-Cryst Solids 354:4089–4093CrossRefGoogle Scholar
  9. 9.
    Borchert Y, Sonstrm P, Wilhelm M, Borchert H, Bumer M (2008) J Phys Chem C 112(8):3054–3063CrossRefGoogle Scholar
  10. 10.
    Cui H, Zayat M, Levy D (2005) J Non-Cryst Solids 351:2102–2106CrossRefGoogle Scholar
  11. 11.
    Cui H, Zayat M, Levy D (2005) J. Sol-Gel Sci Technol 35:175–181CrossRefGoogle Scholar
  12. 12.
    Chervin CN, Clapsaddle BJ, Chiu HW, Gash AE, Satcher JH Jr, Kauzlarich SM (2006) Chem Mater 18:4865–4874CrossRefGoogle Scholar
  13. 13.
    Woo K, Lee H, Ahn J-P, Park YS (2003) Adv Mater 15:1761–1764CrossRefGoogle Scholar
  14. 14.
    Tokudome Y, Fujita K, Nakanishi K, Miura K, Hirao K (2007) Chem Mater 19:3393–3398CrossRefGoogle Scholar
  15. 15.
    Nakanishi K (1997) J Porous Mater 4:67–112CrossRefGoogle Scholar
  16. 16.
    Tokudome Y, Fujita K, Nakanishi K, Kanamori K, Miura K, Hirao K, Hanada T (2007) J Ceram Soc Jpn 115(2):925–928CrossRefGoogle Scholar
  17. 17.
    Mullin JW (1972) Crystallisation. Butterworth, LondonGoogle Scholar
  18. 18.
    Gonzalez-McQuire R, Chane-Ching JY, Vignaud E, Lebugle A, Mann S (2004) J Mater Chem 14:2277–2281CrossRefGoogle Scholar
  19. 19.
    El Shafei GMS, Moussa NA (2001) J Colloid Interface Sci 238:160–166CrossRefGoogle Scholar
  20. 20.
    Misra DN (1996) J Colloid Interface Sci 181:289–296CrossRefGoogle Scholar
  21. 21.
    Ikawa N, Hori H, Kimura T, Oumi Y, Sano T (2008) Langmuir 24:13113–13120CrossRefGoogle Scholar
  22. 22.
    Tsortos A, Nancollas GH (2002) J Colloid Interface Sci 250:159–167CrossRefGoogle Scholar
  23. 23.
    Nakanishi K, Soga N (1992) J Non-Cryst Solids 139:1–13CrossRefGoogle Scholar
  24. 24.
    Brug KJL, Porter S, Kellam JF (2000) Biomaterials 21:2347–2359CrossRefGoogle Scholar
  25. 25.
    Bohner M (2000) Injury 31:37–47CrossRefGoogle Scholar
  26. 26.
    Guicheux J, Gauthier O, Aguado E, Heymann D, Pilet P, Couillaud S, Faivre A, Daculsi G (1998) J Biomed Mater Res 40:560–566CrossRefGoogle Scholar
  27. 27.
    Roy I, Mitra S, Maitra A, Mozumdar S (2003) Int J Pharm 250:25–33CrossRefGoogle Scholar
  28. 28.
    Ohta K, Monma H, Takahashi S (2001) J Biomed Mater Res 55:409–414CrossRefGoogle Scholar
  29. 29.
    Josse S, Faucheux C, Soueidan A, Grimandi G, Massiot D, Alonso B, Janvier P, Laïb S, Gauthier O, Daculsi G, Guicheux J, Bujoli B, Bouler J-M (2004) Adv Mater 16(16):1423–1427CrossRefGoogle Scholar
  30. 30.
    Fujishima M, Okawa Y, Uchida K (2008) J Am Ceram Soc 91(11):3749–3752CrossRefGoogle Scholar
  31. 31.
    Liu C, Han Z, Czernuszka JT (2009) Acta Biomater 5:661–669CrossRefGoogle Scholar
  32. 32.
    Zhang R, Ma PX (1999) J Biomed Mater Res 44(4):446–455CrossRefGoogle Scholar
  33. 33.
    Kosar-Grašić B, Pugarić B, Füredi-Milhofer H (1978) J Inorg Nucl Chem 40:1877–1880CrossRefGoogle Scholar
  34. 34.
    Eshtiagh-Hosseini H, Houssaindokht MR, Chahkandhi M, Youssefi A (2008) J Non-Cryst Solids 354:3854–3857CrossRefGoogle Scholar
  35. 35.
    Åkerlöf G (1932) J Am Chem Soc 54(11):4125–4139CrossRefGoogle Scholar
  36. 36.
    Madsen HEL, Thorvardarson G (1984) J Crystal Growth 66:369–376CrossRefGoogle Scholar
  37. 37.
    Tortet L, Gavarri JR, Nihoul G, Dianoux AJ (1997) J Solid State Chem 132:6–16CrossRefGoogle Scholar
  38. 38.
    Pouchert CJ (1985) The Aldrich Library of FT-IR spectra. Aldrich Chemical Co, MilwaukeeGoogle Scholar
  39. 39.
    Arndt K-F, Richter A, Ludwig S, Zimmermann J, Kressler J, Kuckling D, Adler H-J (1999) Acta Polym 50:383–390CrossRefGoogle Scholar
  40. 40.
    Deniau G, Azoulay L, Bougerolles L, Palacin S (2006) Chem Mater 18:5421–5428CrossRefGoogle Scholar
  41. 41.
    Daniliuc L, De Kesel C, David C (1992) Eur Polym J 28:1365–1371CrossRefGoogle Scholar
  42. 42.
    Nara M, Morii H, Yumoto F, Kagi H, Tanokura M (2006) Biopolymers 82:339–343CrossRefGoogle Scholar
  43. 43.
    Hu Y, Jiang X, Ding Y, Ge H, Yuan Y, Yang C (2002) Biomaterials 23:3193–3201CrossRefGoogle Scholar
  44. 44.
    Grover LM, Gbureck U, Young AM, Wright AJ, Barralet JE (2005) J Mater Chem 15:4955–4962CrossRefGoogle Scholar
  45. 45.
    Chen H-I, Chang H-Y (2004) Colloids Surf A: Phys Eng Asp 242:61–69CrossRefGoogle Scholar
  46. 46.
    Gash AE, Satcher JH Jr, Simpson RL (2003) Chem Mater 15:3268–3275CrossRefGoogle Scholar
  47. 47.
    Bach RD, Dmitrenko O (2002) J Org Chem 67:2588–2599CrossRefGoogle Scholar
  48. 48.
    Gómesz-Morales J, Torrent-Burgués J, Rodríguez-Clemente R (1996) J Crystal Growth 169:331–338CrossRefGoogle Scholar
  49. 49.
    Reddy MM, Plummer LN, Busenberg E (1981) Geochim Cosmochim Acta 45:1281–1289CrossRefGoogle Scholar
  50. 50.
    De Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, New YorkGoogle Scholar
  51. 51.
    De Gennes PG (1980) J Chem Phys 72(9):4756–4763CrossRefGoogle Scholar
  52. 52.
    Hench LL, Wilson J (1993) Introduction to bioceramics. World Scientific, SingaporeGoogle Scholar
  53. 53.
    Arita IH, Castano VM, Wilkinson DS (1995) J Mater Sci: Mater Med 6:19–23CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Yasuaki Tokudome
    • 1
  • Akira Miyasaka
    • 1
  • Kazuki Nakanishi
    • 1
  • Teiichi Hanada
    • 1
  1. 1.Department of Chemistry, Graduate School of ScienceKyoto UniversityKyotoJapan

Personalised recommendations