Journal of Sol-Gel Science and Technology

, Volume 57, Issue 3, pp 299–312 | Cite as

Mesoporous hybrid and nanocomposite thin films. A sol–gel toolbox to create nanoconfined systems with localized chemical properties

  • G. J. A. A. Soler-Illia
  • P. C. Angelomé
  • M. C. Fuertes
  • A. Calvo
  • A. Wolosiuk
  • A. Zelcer
  • M. G. Bellino
  • E. D. Martínez
Original Paper

Abstract

Mesoporous Thin Films (MTF) can be created by combining sol–gel synthesis, template self-assembly and chemical surface modification. A wide palette of inorganic (oxides, phosphates, carbon-based, etc.) and hybrid organic–inorganic frameworks with a variety of composition, pore sizes, and nanoscale, organic or biological functions located in the inorganic skeleton, pore surface or pore interior can be obtained. The properties of the functional pore systems are tuned by the pore size and geometry, wall composition and surface features. These MTF with interesting electronic and optical controlled features are indeed a “nanofacility”. Well-defined monodisperse sized pores also act as nanoreactors, or nanocavities with controlled environment and behaviour. In the last years, the production of accessible MTF, in which either the pore surface or pore volume can be modified by organic functional groups or nanoparticles has been thoroughly explored. Each highly controlled MTF originated from a reproducible and modular synthesis is in itself a building block for more complex structures, presenting order at different length scales (molecular, mesoscopic, macroscopic), and novel properties derived thereof. Selected examples of optical and chemical behaviour of these multiscale materials are presented to illustrate these points.

Keywords

Mesoporous films Nanochemistry Mesoporous hybrids Thin films Functional materials 

References

  1. 1.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710Google Scholar
  2. 2.
    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834Google Scholar
  3. 3.
    Yanagisawa T, Shimizu T, Kuroda K, Kato C (1990) Bull Chem Soc Jpn 63:988Google Scholar
  4. 4.
    Sanchez C, Boissière C, Grosso D, Laberty C, Nicole L (2008) Chem Mater 20:682Google Scholar
  5. 5.
    Soler-Illia GJAA, Sanchez C, Lebeau B, Patarin J (2002) Chem Rev 102:4093Google Scholar
  6. 6.
    Boissière C, Grosso D, Lepoutre S, Nicole L, Brunet-Bruneau A, Sanchez C (2005) Langmuir 21:12362Google Scholar
  7. 7.
    Song C, Villemure G (2001) Microporous Mesoporous Mater 44–45:679Google Scholar
  8. 8.
    Walcarius A (2005) CR Chim 8:693Google Scholar
  9. 9.
    Wei T-C, Hillhouse HW (2007) Langmuir 23:5689Google Scholar
  10. 10.
    Otal EH, Angelomé PC, Aldabe-Bilmes S, Soler-Illia GJAA (2006) Adv Mater 18:934Google Scholar
  11. 11.
    Fatthakova-Rohlfing D, Wark M, Rathouskŷ J (2007) Chem Mater 19:6140Google Scholar
  12. 12.
    Sakatani Y, Grosso D, Nicole L, Boissière C, Soler-Illia GJAA, Sanchez C (2006) J Mater Chem 16:77Google Scholar
  13. 13.
    Zhang Y, Lin J, Wang J (2006) Chem Mater 18:2917Google Scholar
  14. 14.
    Angelomé PC, Andrini L, Calvo ME, Requejo FG, Bilmes SA, Soler-Illia GJAA (2007) J Phys Chem C 111:10886Google Scholar
  15. 15.
    Coakley KM, Liu Y, McGehee MD, Frindell K, Stucky GD (2003) Adv Funct Mater 13:301Google Scholar
  16. 16.
    Coakley KM, McGehee MD (2003) Appl Phys Lett 83:3380Google Scholar
  17. 17.
    Zukalová M, Zukal A, Kavan L, Nazeeruddin MK, Liska P, Grätzel M (2005) Nano Lett 5:1789Google Scholar
  18. 18.
    Lancelle-Beltran E, Prené P, Boscher C, Belleville P, Buvat P, Lambert S, Guillet S, Boissière C, Grosso D, Sanchez C (2006) Chem Mater 18:6152Google Scholar
  19. 19.
    Soler-Illia GJAA, Innocenzi P (2006) Chem Euro J 12:4478Google Scholar
  20. 20.
    Nicole L, Boissière C, Grosso D, Quach A, Sanchez C (2005) J Mater Chem 15:3598Google Scholar
  21. 21.
    Grosso D, Cagnol F, Soler-Illia GJAA, Crepaldi EL, Amenitsch H, Brunet-Bruneau A, Bourgeois A, Sanchez C (2004) Adv Funct Mater 14:309Google Scholar
  22. 22.
    Balkenende AR, de Theije FK, Kriege JC (2003) Adv Mater 15:139Google Scholar
  23. 23.
    De Theije FK, Balkenende AR, Verheijen MA, Baklanov MR, Mogilnikov KP, Furukawa Y (2003) J Phys Chem B 107:4280Google Scholar
  24. 24.
    Pai RA, Humayun R, Schulber T, Sengupta A, Sun J-N, Watkins JJ (2004) Science 303:507Google Scholar
  25. 25.
    Innocenzi P, Soler-Illia GJAA (2009) Key EngMater 391:109Google Scholar
  26. 26.
    Anderson MT, Martin JE, Odinek J, Newcomer P (1996) In: Lobo RF, Beck JS, Suib SL, Corbin DR, Davi ME, LE Iton, Zones SI (eds) Microporous and Macroporous Materials, vol 431. Materials Research Society, Pittsburgh PA, p 217Google Scholar
  27. 27.
    Ogawa M (1994) J Am Chem Soc 116:7941Google Scholar
  28. 28.
    Ogawa M (1996) Chem Commun 1149Google Scholar
  29. 29.
    Yang H, Kuperman A, Coombs N, Mamiche-Afara S, Ozin GA (1996) Nature 379:703Google Scholar
  30. 30.
    Lu Y, Ganguli R, Drewien CA, Anderson MT, Brinker CJ, Gong W, Guo Y, Soyez H, Dunn B, Huang MH, Zink JI (1997) Nature 389:364Google Scholar
  31. 31.
    Klotz M, Albouy PA, Ayral A, Ménager C, Grosso D, Van der Lee A, Cabuil V, Babonneau F, Guizard C (2000) Chem Mater 12:1721Google Scholar
  32. 32.
    Lu Y, Fan H, Doke N, Loy DA, Assink RA, LaVan DA, Brinker CJ (2000) J Am Chem Soc 122:5258Google Scholar
  33. 33.
    Albouy PA, Ayral A (2002) Chem Mater 14:3391Google Scholar
  34. 34.
    Dourdain S, Gibaud A (2005) Appl Phys Lett 87:223105Google Scholar
  35. 35.
    Dourdain S, Mehdi A, Bardeau JF, Gibaud A (2006) Thin Solid Films 495:205Google Scholar
  36. 36.
    Huang MH, Soyez HM, Dunn BS, Zink JI, Sellinger A, Brinker CJ (2008) J Sol-Gel Sci Technol 47:300Google Scholar
  37. 37.
    Brinker CJ, Lu Y, Sellinger A, Fan H (1999) Adv Mater 11:579Google Scholar
  38. 38.
    Grosso D, Balkenende AR, Albouy PA, Ayral A, Amenitsch H, Babonneau F (2001) Chem Mater 13:1848Google Scholar
  39. 39.
    Grosso D, Babonneau F, Soler-Illia GJAA, Albouy PA, Amenitsch H (2002) Chem Commun 748Google Scholar
  40. 40.
    Crepaldi EL, Soler-Illia GJAA, Grosso D, Cagnol F, Ribot F, Sanchez C (2003) J Am Chem Soc 125:9770Google Scholar
  41. 41.
    Cagnol F, Grosso D, Soler-Illia GJAA, Crepaldi EL, Amenitsch H, Sanchez C (2003) J Mater Chem 13:61Google Scholar
  42. 42.
    Crepaldi EL, Soler-Illia GJAA, Grosso D, Albouy PA, Sanchez C (2001) Chem Commun 1582Google Scholar
  43. 43.
    Urade VN, Hillhouse HW (2005) J Phys Chem B 109:10538Google Scholar
  44. 44.
    Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD (1998) Nature 356:152Google Scholar
  45. 45.
    Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD (1999) Chem Mater 11:2813Google Scholar
  46. 46.
    Grosso D, Soler-Illia GJAA, Babonneau F, Sanchez C, Albouy PA, Brunet-Bruneau A, Balkenende AR (2001) Adv Mater 13:1085Google Scholar
  47. 47.
    Soler-Illia GJAA, Crepaldi EL, Grosso D, Sanchez C (2003) Curr Opin Colloid Interface Sci 8:109Google Scholar
  48. 48.
    Förster S, Antonietti M (1998) Adv Mater 10:195Google Scholar
  49. 49.
    Bates FS, Fredrickson GH (1999) Physics Today 52:32Google Scholar
  50. 50.
    Israelachvili JN (1992) Intermolecular and surface forces: with applications to colloidal and biological systems, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  51. 51.
    Israelachvili JN, Mitchell DJ, Nyham BW (1976) J Chem Soc Faraday Trans 2(72):1525Google Scholar
  52. 52.
    Klotz M, Ayral A, Guizard C, Cot L (2000) J Mater Chem 10:223Google Scholar
  53. 53.
    Alberius PCA, Frindell KL, Hayward RC, Kramer EJ, Stucky GD, Chmelka BF (2002) Chem Mater 14:3284Google Scholar
  54. 54.
    Besson S, Gacoin T, Ricolleau C, Jacquiod C, Boilot JP (2003) J Mater Chem 13:404Google Scholar
  55. 55.
    Soler-Illia GJAA, Crepaldi EL, Grosso D, Durand D, Sanchez C (2002) Chem Commun 2298Google Scholar
  56. 56.
    Doshi DA, Gibaud A, Goletto V, Lu M, Gerung H, Ocko B, Han SM, Brinker CJ (2003) J Am Chem Soc 125:11646Google Scholar
  57. 57.
    Soler-Illia GJAA, Scolan E, Louis A, Albouy PA, Sanchez C (2001) New J Chem 25:156Google Scholar
  58. 58.
    Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, New YorkGoogle Scholar
  59. 59.
    Crepaldi EL, Soler-Illia GJAA, Bouchara A, Grosso D, Durand D, Sanchez C (2003) Angew Chem Int Ed 42:347Google Scholar
  60. 60.
    Soler-Illia GJAA, Crepaldi EL, Grosso D, Sanchez CJ (2004) Mater Chem 14:1879Google Scholar
  61. 61.
    Bosc F, Ayral A, Albouy PA, Guizard C (2003) Chem Mater 15:2463Google Scholar
  62. 62.
    Hwang YK, Lee KC, Kwon YU (2001) Chem Commun 1738Google Scholar
  63. 63.
    Crepaldi EL, Soler-Illia GJAA, Grosso D, Sanchez C (2003) New J Chem 27:9Google Scholar
  64. 64.
    Bass JD, Grosso D, Boissière C, Sanchez C (2008) J Am Chem Soc 130:7882Google Scholar
  65. 65.
    Grosso D, Soler-Illia GJAA, Crepaldi EL, Cagnol F, Sinturel C, Bourgeois A, Brunet-Bruneau A, Amenitsch H, Albouy PA, Sanchez C, Choi SY, Mamak M, Speakman S, Chopra N, Ozin GA (2004) Small 1:226Google Scholar
  66. 66.
    Štangar UL, Černigoj U, Trebše P, Maver K, Gross S (2006) Monatsh Chem 137:647Google Scholar
  67. 67.
    Carreon M, Choi SY, Mamak M, Chopra N, Ozin GA (2007) J Mater Chem 17:82Google Scholar
  68. 68.
    Grosso D, Boissière C, Smarsly B, Brezesinski T, Pinna N, Albouy PA, Amenitsch H, Antonietti M, Sanchez C (2004) 3:787Google Scholar
  69. 69.
    Lee J, Orilall MC, Warren SC, Kamperman M, Disalvo FJ, Wiesner U (2008) Nat Mater 7:222Google Scholar
  70. 70.
    Tian B, Liu X, Tu B, Yu C, Fan J, Wang L, Xie S, Stucky GD, Zhao DY (2003) Nat Mater 2:159Google Scholar
  71. 71.
    Nishiyama Y, Tanaka S, Hillhouse HW, Nishiyama N, Egashira Y, Ueyama K (2006) Langmuir 22:9469Google Scholar
  72. 72.
    Mazaj M, Costacurta S, Zabukovec-Logar N, Mali G, Novak-Tušar N, Innocenzi P, Malfatti L, Thibault-Starzyk F, Amenitsch H, Kaui V, Soler-Illia GJAA (2008) Langmuir 24:6220Google Scholar
  73. 73.
    Tanaka S, Katayama Y, Tate MP, Hillhouse HW, Miyake Y (2007) J Mater Chem 17:3639Google Scholar
  74. 74.
    Martínez-Ferrero E, Sakatani Y, Boissière C, Grosso D, Fuertes A, Fraxedas J, Sanchez C (2007) Adv Funct Mater 17:3348Google Scholar
  75. 75.
    Innocenzi P, Kidchob T, Falcaro P, Takahashi M (2008) Chem Mater 20:607Google Scholar
  76. 76.
    Chia-Wen W, Tsuyoshi A, Makoto K (2004) Nanotechnology 15:1886–1889Google Scholar
  77. 77.
    Yang P, Deng T, Zhao D, Feng P, Pine D, Chmelka BF, Whitesides GM, Stucky GD (1998) Science 282:2244Google Scholar
  78. 78.
    Yang P, Rizvi AH, Messer B, Chmelka BF, Whitesides GM, Stucky GD (2001) Adv Mater 13:427Google Scholar
  79. 79.
    Cucinotta F, Popovi Z, Weiss EA, Whitesides GM, De Cola L (2009) Adv Mater DOI: 10.1002/adma.200801751 (in press)
  80. 80.
    Doshi DA, Huesing NK, Lu M, Fan H, Lu Y, Simmons-Potter K Jr, Hurd AJ, Brinker CJ (2000) Science 290:107Google Scholar
  81. 81.
    Lu Y, Yang Y, Sellinger A, Lu M, Huang J, Fan H, Haddad R, Lopez G, Burns AR, Sasaki DY, Shelnutt J, Brinker CJ (2001) Nature 410:913Google Scholar
  82. 82.
    Ha K, Lee YJ, Chun YS, Park YS, Lee GS, Yoon KB (2001) Adv Mater 13:594Google Scholar
  83. 83.
    Sugimura H, Hozumi A, Kameyama T, Takai O (2001) Adv Mater 13:667Google Scholar
  84. 84.
    Clark T Jr, Ruiz JD, Fan H, Brinker CJ, Swanson BI, Parikh AN (2000) Chem. Mater 12:3879Google Scholar
  85. 85.
    Dattelbaum AM, Amweg ML, Ecke LE, Yee CK, Shreve PA, Parikh AN (2003) Nano Lett 3:719Google Scholar
  86. 86.
    Malfatti L, Kidchob T, Costacurta S, Falcaro P, Schiavuta P, Amenitsch H, Innocenzi P (2006) Chem Mater 18:4553Google Scholar
  87. 87.
    Falcaro P, Costacurta S, Malfatti L, Takahashi M, Kidchob T, Casula MF, Piccinini M, Marcelli A, Marmiroli B, Amenitsch H, Schiavuta P, Innocenzi P (2008) Adv Mater 20:1864–1869Google Scholar
  88. 88.
    George MC, Mohraz A, Piech M, Bell NS, Lewis JA, Braun PV (2009) Adv Mater 21:66Google Scholar
  89. 89.
    Fan H, Lu Y, Stump A, Reed ST, Baer T, Schunk R, Perez-Luna V, Lopez GP, Brinker GJ (2000) Nature 405:56Google Scholar
  90. 90.
    Mougenot M, Lejeune M, Baumard JF, Boissiere C, Ribot F, Grosso D, Sanchez C, Noguera RJ (2006) Am Ceram Soc 89:1876Google Scholar
  91. 91.
    Su M, Liu X, Li S-Y, Dravid VP, Mirkin CAJ (2002) Am Chem Soc 124:1560Google Scholar
  92. 92.
    Kim T-W, Ryoo R, Kruk M, Gierszal KP, Jaroniec M, Kamiya S, Terasaki O (2004) J Phys Chem B 108:11480Google Scholar
  93. 93.
    Etienne M, Quach A, Grosso D, Nicole L, Sanchez C, Walcarius A (2007) Chem Mater 19:844Google Scholar
  94. 94.
    Fuertes MC, Soler-Illia GJAA (2006) Chem Mater 18:2109Google Scholar
  95. 95.
    Kumon S, Nakanishi K, Hirao K (2000) J Sol-Gel Sci Technol 19:1573Google Scholar
  96. 96.
    Malfatti L, Bellino M, Innocenzi P, Soler-Illia GJAA (2008) Chem Mater DOI:10.1021/cm900289c (in press)
  97. 97.
    Xie R, Karim A, Douglas JF, Han CC, Weiss RA (1998) Phys Rev Lett 81:1251Google Scholar
  98. 98.
    Stange TG, Evans DF, Hendrickson WA (1997) Langmuir 13:4459Google Scholar
  99. 99.
    Lee Y, Koh K, Na H, Kim K, Kang J-J, Kim J (2009) Nanoscale Res Lett 4:364Google Scholar
  100. 100.
    Zelcer A, Wolosiuk A, Soler-Illia GJAA (2009) J Mater Chem 19:4191Google Scholar
  101. 101.
    Fan J, Boettcher SW, Tsung C-K, Shi Q, Schierhorn M, Stucky GD (2008) Chem Mater 20:909Google Scholar
  102. 102.
    Miyata H, Suzuki T, Fukuoka A, Sawada T, Watanabe M, Noma T, Takada K, Mukaide T, Kuroda K (2004) Nat Mater 3:651Google Scholar
  103. 103.
    Miyata H (2007) Microporous Mesoporous Mater 101:296Google Scholar
  104. 104.
    Bolger CT, Farrell RA, Hughes GM, Morris MA, Petkov N, Holmes JD (2009) ACS Nano 3:2311Google Scholar
  105. 105.
    Fitzgerald TG, Farrell RA, Petkov N, Bolger CT, Shaw MT, Charpin JPF, Gleeson JP, Holmes JD, Morris MA (2009) Langmuir 25:13551Google Scholar
  106. 106.
    Cagnol F, Grosso D, Sanchez C (2004) Chem Commun 1742Google Scholar
  107. 107.
    Soler-Illia GJAA, Angelomé PC, Bozzano P (2004) Chem Commun 2854Google Scholar
  108. 108.
    Angelomé PC, Soler-Illia GJAA (2005) J Mater Chem 15:3903Google Scholar
  109. 109.
    Shi JL, Hua ZL, Zhang LX (2004) J Mater Chem 14:795Google Scholar
  110. 110.
    Calvo A, Joselevich M, Soler-Illia GJAA, Williams FJ (2009) Microporous Mesoporous Mater 121:67Google Scholar
  111. 111.
    Calvo A, Angelomé PC, Sánchez VM, Scherlis D, Williams FJ, Soler-Illia GJAA (2008) Chem Mater 20:4661Google Scholar
  112. 112.
    Calvo A, Yameen B, Williams FJ, Azzaroni OA, Soler-Illia GJAA (2009) Chem Commun 2553Google Scholar
  113. 113.
    Calvo A, Yameen B, Williams FJ, Soler-Illia GJAA, Azzaroni O (2009) J Am Chem Soc 131:10866Google Scholar
  114. 114.
    Liu J, Shin Y, Nie Z, Chang JH, Wang L-Q, Fryxell GE, Samuels WD, Exarhos GJ (2000) J Phys Chem A 104:8328Google Scholar
  115. 115.
    Notestein JM, Katz A (2006) Chem Euro J 12:3854Google Scholar
  116. 116.
    Bronstein L (2003) Top Curr Chem 226:55Google Scholar
  117. 117.
    Huang MH, Choudrey A, Yang P (2000) Chem Commun 1063Google Scholar
  118. 118.
    Perez MD, Otal E, Bilmes SA, Soler-Illia GJAA, Crepaldi EL, Grosso D, Sanchez C (2004) Langmuir 20:6879Google Scholar
  119. 119.
    Wang D, Luo H, Kou R, Gil MP, Xiao S, Golub VO, Yang Z, Brinker CJ, Lu Y (2004) Angew Chem Int Ed 43:6169Google Scholar
  120. 120.
    Mallory GO, Hajdu JB (eds) (1990) Electroless plating: fundamentals and applications. William Andrew Publishing, NoyesGoogle Scholar
  121. 121.
    Kumai Y, Tsukada H, Akimoto Y, Sugimoto N, Seno Y, Fukuoka AT, Ichikawa M, Inagaki S (2006) Adv Mater 18:760Google Scholar
  122. 122.
    Mulvaney P (2001) MRS Bull 1009Google Scholar
  123. 123.
    Van der Lee A (2000) A Solid State Sci 2:157Google Scholar
  124. 124.
    Fuertes MC, Marchena M, Marchi MC, Wolosiuk A, Soler-Illia GJAA (2009) Small 5:272Google Scholar
  125. 125.
    Wolosiuk A, Tognalli NG, Fuertes MC, Granada M, Troiani H, Bilmes SA, Fainstein A, Soler-Illia GJAA (2010) J Mater Chem (submitted)Google Scholar
  126. 126.
    Fuertes MC, Colodrero S, Lozano G, Rodríguez González-Elipe A, Grosso D, Boissière C, Sánchez C, Soler-Illia GJAA, Míguez H (2008) J Phys Chem C 112:3157Google Scholar
  127. 127.
    Angelomé PC, Fuertes MC, Soler-Illia GJAA (2006) Adv Mater 18:2397Google Scholar
  128. 128.
    Martínez ED, Bellino MG, Soler-Illia GJAA (2009) ACS Appl Mater Interface 1:746Google Scholar
  129. 129.
    Choi SY, Mamak M, von Freymann G, Chopra N, Ozin GA (2006) Nano Lett 6:2456Google Scholar
  130. 130.
    Fuertes MC, López-Alcaraz FJ, Marchi MC, Troiani H, Luca V, Míguez H, Soler-Illia GJAA (2007) Adv Funct Mater 17:1247Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • G. J. A. A. Soler-Illia
    • 1
    • 2
  • P. C. Angelomé
    • 1
  • M. C. Fuertes
    • 1
  • A. Calvo
    • 1
  • A. Wolosiuk
    • 1
    • 2
  • A. Zelcer
    • 1
    • 2
  • M. G. Bellino
    • 1
  • E. D. Martínez
    • 1
  1. 1.Gerencia de Química, Centro Atómico ConstituyentesComisión Nacional de Energía AtómicaBuenos AiresArgentina
  2. 2.Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires, Ciudad UniversitariaBuenos AiresArgentina

Personalised recommendations