Advertisement

Journal of Sol-Gel Science and Technology

, Volume 53, Issue 3, pp 667–672 | Cite as

Silica nanoparticles obtained by microwave assisted sol–gel process: multivariate analysis of the size and conversion dependence

  • E. Mily
  • A. González
  • J. J. Iruin
  • L. IrustaEmail author
  • M. J. Fernández-Berridi
Original Paper

Abstract

Silica nanoparticles were synthesized by the sol–gel method in alcoholic solution under microwave irradiation in the presence of an ammonium catalyst. The effect of the reaction time, the reaction temperature, water and ammonium concentrations on particle size and conversion (measured by light scattering and FTIR respectively) were analyzed using multivariate analysis. The results showed that water and ammonium concentrations are the main factors that control the particle size and the conversion. Both properties increase with water and ammonium concentration. Moreover, comparing with the results obtained using traditional heating, the microwave heating gave rise to higher reaction rate and narrower dispersion of the particle size.

Keywords

Silica Microwave Nanoparticles Multivariate analysis 

Notes

Acknowledgement

The authors would like to thank the financial support of the Ministerio de Educación y Ciencia (INTERHYBRID project, nº MAT2005-08033-C02-01).

References

  1. 1.
    Stöber W, Fink A, Bohn E (1968) J Colloid Interface Sci 26:62CrossRefGoogle Scholar
  2. 2.
    Brinker CJ, Scherer GW (1990) Sol–gel science. Academic Press, New YorkGoogle Scholar
  3. 3.
    Lindberg R, Sundholm G, Pettersen B, Sjöblom J, Friberg SE (1997) Colloids Surf A 123–124:549CrossRefGoogle Scholar
  4. 4.
    Hartlen KD, Athanasopoulos APT, Kitaev V (2008) Langmuir 24:1714CrossRefPubMedGoogle Scholar
  5. 5.
    Kim KD, Kim HT (2002) J Sol–Gel Sci Technol 25:183CrossRefGoogle Scholar
  6. 6.
    Zhao M, Zheng L, Bai X, Li N, Yu L (2009) Colloids Surf A 346:229–236CrossRefGoogle Scholar
  7. 7.
    Nüchter M, Ondruschka B, Bonrath W, Gum A (2004) Green Chem 6:128CrossRefGoogle Scholar
  8. 8.
    Tompsett GA, Conner WC, Yngvesson KS (2006) Chem Phys Chem 7:296PubMedGoogle Scholar
  9. 9.
    Rao KJ, Vaidhyanathan B, Ganguli M, Ramakrishan PA (1999) Chem Mater 11:882CrossRefGoogle Scholar
  10. 10.
    Inada M, Nishinosono A, Kamada K, Enemoto N, Hojo J (2008) J Mater Sci 43:2362CrossRefADSGoogle Scholar
  11. 11.
    Corradi AB, Bondioli F, Ferrari AM, Focher B, Leonelli C (2006) Powder Technol 167:45CrossRefGoogle Scholar
  12. 12.
    Celer EB, Jaroniec M (2006) J Am Chem Soc 128:14408CrossRefPubMedGoogle Scholar
  13. 13.
    De G, Karmakar B, Ganguli D (2000) J Mater Chem 10:2289CrossRefGoogle Scholar
  14. 14.
    Wu C, Wu Y, Xu T, Yang WJ (2006) Non-Cryst Solids 352:5642CrossRefADSGoogle Scholar
  15. 15.
    Kaluz AL, Surca-Vuk A, Orel B, Drazia G, Pelicon P (2001) J Sol–Gel Sci Technol 20:61CrossRefGoogle Scholar
  16. 16.
    Wen J, Wilkes GS (1996) Chem Mater 8:1668CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • E. Mily
    • 1
  • A. González
    • 1
  • J. J. Iruin
    • 1
  • L. Irusta
    • 1
    Email author
  • M. J. Fernández-Berridi
    • 1
  1. 1.Department of Polymer Science and Technology and Institute for Polymer Materials (POLYMAT)University of the Basque CountrySan SebastianSpain

Personalised recommendations