Journal of Sol-Gel Science and Technology

, Volume 53, Issue 3, pp 485–497 | Cite as

Sol–gel reactions of titanium alkoxides and water: influence of pH and alkoxy group on cluster formation and properties of the resulting products

Original Paper


In this work the effect of pH and the titanium precursor on the cluster and particle formation during titanium alkoxide based sol–gel processes was investigated using electrospray ionization mass spectrometry (ESI-MS) and dynamic light scattering (DLS). The influence of pH and the titanium precursor on the particle size, morphology, crystallinity and chemical composition of the resulting particles were investigated using differentiel scanning calometry (DSC), X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FT-IR), BET-adsorption isotherms and high resolution transmission electron microscopy (HR-TEM). ESI-MS investigation of the titanium clusters present during the nucleation and growth period showed that the number of titanium atoms in the clusters varied dependent on the alkoxide used. Moreover, it was found that the titanium clusters formed using titanium tetraethoxide (TTE) were smaller than the clusters formed by titanium tetraisopropoxide (TTIP) and titanium tetrabutoxide (TTB) under similar conditions. pH was not found to influence the nature of the titanium clusters present in the sol–gel solution. HR-TEM investigation of the TiO2 particles prepared at pH 7 and 10 showed that the primary particle size of the particles was around 3 nm. However, it was found that these primary particles aggregated to form larger secondary particles in the size order of 300–500 nm range. At pH 3 the particles grew significantly during the drying process due to destabilization of the colloidal solution leading to the formation of a gel. The highest specific surface area was found for particles synthesized under neutral or alkaline conditions based on TTIP. XRD analysis of the TiO2 particles showed that the particles synthesized at 25 °C were amorphous. First after heating the samples to above 300 °C the formation of anatase were observed.


TiO2 Solgel process ESI-MS DLS Particle morphology 


  1. 1.
    Cristoni S, Armelao L, Gross S, Tondello E, Traldi P (2000) Rapid Commun Mass Spectrom 14:662–668CrossRefPubMedGoogle Scholar
  2. 2.
    Seraglia R, Armelao L, Cristoni S, Gross S, Tondello E, Traldi P (2003) Rapid Commun Mass Spectrom 17:2649–2654CrossRefPubMedGoogle Scholar
  3. 3.
    Cristoni C, Traldi P, Armelao L, Gross S, Tondello E (2001) Rapid Commun Mass Spectrom 15:386–392CrossRefGoogle Scholar
  4. 4.
    Brinker CJ, Scherer GW (1990) Sol-gel science, the physics and chemistry of sol-gel processing. Academic Press, San DiegoGoogle Scholar
  5. 5.
    Blanchard J (1997) PhD Thesis, Universite′ Pierre et Marie CurieGoogle Scholar
  6. 6.
    Soloviev A, Tufue R, Sanchez C, Kanaev AV (2001) J Phys Chem B 105:4175–4180CrossRefGoogle Scholar
  7. 7.
    Soloviev A, Søgaard EG (2006) J Mater Sci 41:6159–6161CrossRefADSGoogle Scholar
  8. 8.
    Rozes L, Steunou N, Fornasieri G, Sanchez C (2006) Monatshefte für Chemie 137:501–528CrossRefGoogle Scholar
  9. 9.
    Blanchard J, Ribot F, Sanchez C, Bellot P-V, Trokiner A (2000) J Non-crystal solids 265:83–97CrossRefADSGoogle Scholar
  10. 10.
    Soloviev A, Ivanov D, Tufeu R, Kanaev AV (2001) J Mater Sci Lett 20:905–906CrossRefGoogle Scholar
  11. 11.
    Soloviev A, Jensen H, Søgaard EG (2003) J Mater Sci 38:3315–3318CrossRefGoogle Scholar
  12. 12.
    Campostrini R, Carturan G, Pelli B, Traldi P (1989) J Non-Cryst Solids 108:143CrossRefADSGoogle Scholar
  13. 13.
    Campostrini R, Carturan G, Sorarù G, Traldi P (1989) J Non-Cryst Solids 108:315CrossRefADSGoogle Scholar
  14. 14.
    Cristoni S, Armelao L, Tondello E, Traldi P (1999) J Mass Spectrom 34:1380–1382CrossRefPubMedGoogle Scholar
  15. 15.
    Kallala K, Sanchez C, Cabana B (1992) J Non-crystal Solids 147–148:189–193CrossRefGoogle Scholar
  16. 16.
    Marchisio DL, Omegna F, Barresi AA, Bowen P (2008) Ind Eng Chem Res 47:7202–7210CrossRefGoogle Scholar
  17. 17.
    Gaun B, Lu W, Fang J, Cole RB (2007) J Am Soc Mass Spectrom 18:517–524CrossRefGoogle Scholar
  18. 18.
    Kang M, Lee S-Y, Chung C-H, Cho SM, Han GY, Kim B-W, Yoon KJ (2001) J Photochem Photobiol A 144, 2–3, 185–191Google Scholar
  19. 19.
    Liu H, Yang W, Ma Y, Cao Y, Yao J, Zhang J, Hu T (2003) Langmuir 19:3001–3005CrossRefGoogle Scholar
  20. 20.
    Yu J, Zhao X, Zhao Q (2000) Thin Solid Films 379:7–14CrossRefADSGoogle Scholar
  21. 21.
    Urlaub R, Posset U, Thull R (2000) J Non-crystal Solids 265:276–284CrossRefADSGoogle Scholar
  22. 22.
    Velasco M, Rubio F, Rubio J, Oteo JL (1999) Spec Lett 32(2):289–304CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Esbjerg Institute of Technology, Section for Chemical EngineeringAalborg UniversityEsbjergDenmark

Personalised recommendations