Journal of Sol-Gel Science and Technology

, Volume 57, Issue 3, pp 323–329 | Cite as

The “benzyl alcohol route”: An elegant approach towards doped and multimetal oxide nanocrystals

Short review and ZnAl2O4 nanostructures by oriented attachment
  • Nicola Pinna
  • Mohamed Karmaoui
  • Marc-Georg Willinger
Original Paper

Abstract

In this article, the versatility and the potential of the “benzyl alcohol route” for the synthesis of multimetal and doped metal oxides are highlighted in the first part of the manuscript. Among the presented examples, some materials have not been accessible by other solution syntheses and could so far only be obtained through solid state reactions. The second part describes the synthesis and characterization of 5–6 nm ZnAl2O4 nanoparticles which form flower-like aggregates through the oriented attachment crystallization mechanism.

Keywords

Nanocrystals Metal oxides Nonaqueous synthesis 

Notes

Acknowledgements

This work was partially supported by the European Network of Excellence FAME, the WCU (World Class University) program through the Korea Science and Engineering Foundation funded by the Ministry of Education, Science and Technology (400-2008-0230), and FCT Project No. (PTDC/CTM/65667/2006)

References

  1. 1.
    Ba J, Feldhoff A, Fattakhova-Rohlfing D, Wark M, Antonietti M, Niederberger M (2007) Crystallization of indium tin oxide nanoparticles: from cooperative behavior to individuality. Small 3:310–317. doi:10.1002/smll.200600425 Google Scholar
  2. 2.
    Ba JH, Fattakhova-Rohlfing D, Feldhoff A, Brezesinski T, Djerdj I, Wark M, Niederberger M (2006) Nonaqueous synthesis of uniform indium tin oxide nanocrystals and their electrical conductivity in dependence of the tin oxide concentration. Chem Mater 18:2848–2854. doi:10.1021/cm060548q Google Scholar
  3. 3.
    Bilecka I, Djerdj I, Niederberger M (2008) One-minute synthesis of crystalline binary and ternary metal oxide nanoparticles. Chem Commun 886–888. doi:10.1039/b717334b
  4. 4.
    Cao M, Wang Y, Chen T, Antonietti M, Niederberger M (2008) A highly sensitive and fast-responding ethanol sensor based on CdIn2O4 nanocrystals synthesized by a nonaqueous sol–gel route. Chem Mater 20:5781–5786. doi:10.1021/cm800794y Google Scholar
  5. 5.
    Clavel G, Rauwel E, Willinger MG, Pinna N (2009) Nonaqueous sol–gel routes applied to atomic layer deposition of oxides. J Mater Chem 19:454–462. doi:10.1039/b806215c Google Scholar
  6. 6.
    Clavel G, Willinger MG, Zitoun D, Pinna N (2007) Solvent dependent shape and magnetic properties of doped ZnO nanostructures. Adv Funct Mater 17:3159–3169. doi:10.1002/adfm.200601142 Google Scholar
  7. 7.
    Clavel G , Willinger MG, Zitoun D, Pinna N (2008) Manganese-doped zirconia nanocrystals. Eur J Inorg Chem 2008(6):863–868. doi:10.1002/ejic.200700977
  8. 8.
    Coelfen H, Antonietti M (2008) Mesocrystals and nonclassical crystallization. John Wiley & Sons Ltd., Chichester, EnglandCrossRefGoogle Scholar
  9. 9.
    Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946. doi:10.1021/cr030027b Google Scholar
  10. 10.
    Djerdj I, Arcon D, Jaglicic Z, Niederberger M (2008) Nonaqueous synthesis of metal oxide nanoparticles: short review and doped titanium dioxide as case study for the preparation of transition-metal doped oxide nanoparticles. J Solid State Chem 181:1574–1584. doi:10.1016/j.jssc.2008.04.016
  11. 11.
    Djerdj I, Garnweitner G, Arcon DMP, Zvonko J, Niederberger M (2008) Diluted magnetic semiconductors: Mn/Co-doped ZnO nanorods as case study. J Mater Chem 18:5208–5217. doi:10.1039/b808361d Google Scholar
  12. 12.
    Fan HJ, Knez M, Scholz R, Nielsch K, Pippel E, Hesse D, Zacharias M, Goesele U (2006) Monocrystalline spinel nanotube fabrication based on the kirkendall effect. Nature Mater 5:627–631. doi:10.1038/nmat1673 Google Scholar
  13. 13.
    Garnweitner G (2005) Nonaqueous synthesis of transition-metal oxide nanoparticles and their formation mechanism. Ph.D. thesis, University of Potsdam. http://www.opus.kobv.de/ubp/volltexte/2005/589/
  14. 14.
    Garnweitner G, Niederberger M (2006) Nonaqueous and surfactant-free synthesis routes to metal oxide nanoparticles. J Am Ceram Soc 89:1801–1808. doi:10.1111/j.1551-2916.2006.01005.x Google Scholar
  15. 15.
    Jun YW, Choi JS, Cheon J (2006) Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew. Chem Int Ed 45:3414–3439. doi:10.1002/anie.200503821 Google Scholar
  16. 16.
    Karmaoui M, Ferreira RAS, Mane AT, Carlos LD, Pinna N (2006) Lanthanide-based lamellar nanohybrids:Synthesis, structural characterization, and optical properties. Chem Mater 18:4493–4499. doi:10.1021/cm060705l Google Scholar
  17. 17.
    Karmaoui M, Willinger MG, Mafra L, Herntrich T, Pinna N (2009) A general nonaqueous route to crystalline alkaline earth aluminate nanostructures. Nanoscale. doi:10.1039/b9nr00164f
  18. 18.
    Livage J, Henry M, Sanchez C (1988) Sol–gel chemistry of transition metal oxides. Prog Solid State Chem 18:259–341. doi:10.1016/0079-6786(88)90005-2
  19. 19.
    Mutin PH, Vioux A (2009) Nonhydrolytic processing of oxide-based materials:Simple routes to control homogeneity, morphology, and nanostructure. Chem Mater 21:582–596. doi:10.1021/cm802348c Google Scholar
  20. 20.
    Neri G, Bonavita A, Rizzo G, Galvagno S, Pinna N, Niederberger M, Capone S, Siciliano P (2007) Towards enhanced performances in gas sensing: SnO2 based nanocrystalline oxides application. Sens Actuators B 122:564–571. doi:10.1016/j.snb.2006.07.006 Google Scholar
  21. 21.
    Niederberger M (2007) Nonaqueous sol–gel routes to metal oxide nanoparticles. Acc Chem Res 40:793–800. doi:10.1021/ar600035e Google Scholar
  22. 22.
    Niederberger M, Bartl MH, Stucky GD (2002) Benzyl alcohol and titanium tetrachloride: a versatile reaction system for the nonaqueous and low-temperature preparation of crystalline and luminescent titania nanoparticles. Chem Mater 14:4364–4370. doi:10.1021/cm021203k Google Scholar
  23. 23.
    Niederberger M, Bartl MH, Stucky GD (2002) Benzyl alcohol and transition metal chlorides as a versatile reaction system for the nonaqueous and low-temperature synthesis of crystalline nano-objects with controlled dimensionality. J Am Chem Soc 124:13642–13643. doi:10.1021/ja027115i Google Scholar
  24. 24.
    Niederberger M, Coelfen H (2006) Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys Chem Chem Phys 8:3271–3287. doi:10.1039/b604589h Google Scholar
  25. 25.
    Niederberger M, Garnweitner G (2006) Organic reaction pathways in the nonaqueous synthesis of metal oxide nanoparticles. Chem Eur J 12:7282–7302. doi:10.1002/chem.200600313 Google Scholar
  26. 26.
    Niederberger M, Garnweitner G, Ba J, Polleux J, Pinna N (2007) Nonaqueous synthesis, assembly and formation mechanisms of metal oxide nanocrystals. Int J Nanotechnol 4:263–281. doi:10.1504/IJNT.2007.013473 Google Scholar
  27. 27.
    Niederberger M, Garnweitner G, Buha J, Polleux J, Ba J, Pinna N (2006) Nonaqueous synthesis of metal oxide nanoparticles: review and indium oxide as case study for the dependence of particle morphology on precursors and solvents. J Sol–Gel Sci Technol 40:259–266. doi:10.1007/s10971-006-6668-8 CrossRefGoogle Scholar
  28. 28.
    Niederberger M, Garnweitner G, Pinna N, Antonietti M (2004) Nonaqueous and halide-free route to crystalline BaTiO3, SrTiO3, and (Ba,Sr)TiO3 nanoparticles via a mechanism involving c–c bond formation. J Am Chem Soc 126:9120–9126. doi:10.1021/ja0494959 Google Scholar
  29. 29.
    Niederberger M, Pinna N (2009) Metal oxide nanoparticles in organic solvents: synthesis, formation, assembly and application. Springer ISBN:978-1-84882-670-0Google Scholar
  30. 30.
    Niederberger M, Pinna N, Polleux J, Antonietti M (2004) A general soft chemistry route to perovskites and related materials: synthesis of BaTiO3, BaZrO3 and LiNbO3 nanoparticles. Angew Chem Int Ed 43:2270–2273. doi:10.1002/anie.200353300 Google Scholar
  31. 31.
    Ninjbadgar T, Garnweitner G, Börger A, Goldenberg LM, Sakhno OV, Stumpe J (2009) Synthesis of luminescent ZrO2:Eu3+ nanoparticles and their holographic sub-micrometer patterning in polymer composites. Adv Funct Mater 19:1819–1825. doi:10.1002/adfm.200801835 Google Scholar
  32. 32.
    Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed 46:4630–4660. doi:10.1002/anie.200603148 Google Scholar
  33. 33.
    Penn RL, Banfield JF (1998) Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281:969–971. doi:10.1126/science.281.5379.969 Google Scholar
  34. 34.
    Penn RL, Banfield JF (1998) Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: insights from nanocrystalline TiO2. Am Mineral 83:1077–1082Google Scholar
  35. 35.
    Penn RL, Banfield JF (1999) Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania. Geochim Cosmochim Acta 63:1549–1557. doi:10.1016/S0016-7037(99)00037-X
  36. 36.
    Pinna N (2007) The “benzyl alcohol route”: an elegant approach towards organic–inorganic hybrid nanomaterials. J Mater Chem 17:2769–2774. doi:10.1039/b702854g Google Scholar
  37. 37.
    Pinna N, Antonietti M, Niederberger M (2004) A novel nonaqueous route to V2O3 and Nb2O5 nanocrystals. Colloids Surf A 250:211–213. doi:10.1016/j.colsurfa.2004.04.078 CrossRefGoogle Scholar
  38. 38.
    Pinna N, Bonavita, A, Neri, G, Capone S, Siciliano P, Niederberger M (2004) Nonaqueous synthesis of high-purity indium and tin oxide nanocrystals and their application as gas sensors. In: Proceedings of the IEEE sensors, pp 192–195Google Scholar
  39. 39.
    Pinna N, Garnweitner G, Antonietti M, Niederberger M (2004) Non-aqueous synthesis of high-purity metal oxide nanopowders using an ether elimination process. Adv Mater 16:2196–2200. doi:10.1002/adma.200400460 Google Scholar
  40. 40.
    Pinna N, Garnweitner G, Beato P, Niederberger M, Antonietti M (2005) Synthesis of yttria-based crystalline and lamellar nanostructures and their formation mechanism. Small 1:112–121. doi:10.1002/smll.200400014 Google Scholar
  41. 41.
    Pinna N, Neri G, Antonietti M, Niederberger M (2004) Nonaqueous synthesis of nanocrystalline semiconducting metal oxides for gas sensing. Angew Chem Int Ed 43:4345–4349. doi:10.1002/anie.200460610 Google Scholar
  42. 42.
    Pinna N, Niederberger M UnpublishedGoogle Scholar
  43. 43.
    Pinna N, Niederberger M (2008) Surfactant-free nonaqueous synthesis of metal oxide nanostructures. Angew Chem Int Ed 47:5292–5304. doi:10.1002/anie.200704541 Google Scholar
  44. 44.
    Polleux J, Pinna N, Antonietti M, Hess C, Wild U, Schlogl R, Niederberger M (2005) Ligand functionality as a versatile tool to control the assembly behavior of preformed titania nanocrystals. Chem Eur J 11:3541–3551. doi:10.1002/chem.200401050 Google Scholar
  45. 45.
    Polleux J, Pinna N, Antonietti M, Niederberger M (2004) Ligand-directed assembly of preformed titania nanocrystals into highly anisotropic nanostructures. Adv Mater 16:436–439. doi:10.1002/adma.200306251 CrossRefGoogle Scholar
  46. 46.
    Polleux J, Pinna N, Antonietti M, Niederberger M (2005) Growth and assembly of crystalline tungsten oxide nanostructures assisted by bioligation. J Am Chem Soc 127:15595–15601. doi:10.1021/ja0544915 Google Scholar
  47. 47.
    Pucci A, Clavel G, Willinger MG, Zitoun D, Pinna N (2009) Transition metal doped ZrO2 and HfO2 nanocrystals. J Phys Chem C 113:12048–12058. doi:10.1021/jp9029375 CrossRefGoogle Scholar
  48. 48.
    Sanchez C, Livage J, Henry M, Babonneau F (1988) Chemical modification of alkoxide precursors. J Non-Cryst Solids 100:65–76. doi:10.1016/0022-3093(88)90007-5 Google Scholar
  49. 49.
    da Silva RO, Conti TG, de Moura AF, Stroppa DG, Freitas LCG, Ribeiro C, Camargo ER, Longo E, Leite ER (2009) Antimony-doped tin oxide nanocrystals:synthesis and solubility behavior in organic solvents. Chem Phys Chem 10:841–846. doi:10.1002/cphc.200800764 Google Scholar
  50. 50.
    Vazquez-Vazquez C, Lopez-Quintela MA (2006) Solvothermal synthesis and characterisation of La1−xAxMnO3 nanoparticles. J Solid State Chem 179:3229–3237. doi:10.1016/j.jssc.2006.06.021 CrossRefGoogle Scholar
  51. 51.
    Vioux A (1997) Nonhydrolytic sol–gel routes to oxides. Chem Mater 9:2292–2299. doi:10.1021/cm970322a Google Scholar
  52. 52.
    Wang Y, Chen T, Mu Q, Wang G (2009) A nonaqueous sol–gel route to synthesize CdIn2O4 nanoparticles for the improvement of formaldehyde-sensing performance. Scripta Mater 61:935–938. doi:10.1016/j.scriptamat.2009.07.029 Google Scholar
  53. 53.
    Wang Y, Wu K (2005) As a whole:Crystalline zinc aluminate nanotube array-nanonet. J Am Chem Soc 127:9686–9687. doi:10.1021/ja0505402 Google Scholar
  54. 54.
    Xiao L, Zhao Y, Yin J, Zhang L (2009) Clewlike ZnV2O4 hollow spheres:Nonaqueous sol–gel synthesis, formation mechanism, and lithium storage properties. Chem Eur J 15:9442–9450. doi:10.1002/chem.200901328 Google Scholar
  55. 55.
    Zhang L, Djerdj I, Cao M, Antonietti M, Niederberger M (2007) Nonaqueous sol–gel synthesis of nanocrystalline InNbO4 visible light photocatalyst. Adv Mater 19:2083–2086. doi:10.1002/adma.200700027 Google Scholar
  56. 56.
    Zhang L, Garnweitner G, Djerdj I, Antonietti M, Niederberger M (2008) Generalized nonaqueous sol–gel synthesis of different transition metal niobate nanocrystals and analysis of the growth mechanism. Chem Asian J 3:746–752. doi:10.1002/asia.200700318 Google Scholar
  57. 57.
    Zitoun D, Pinna N, Frolet N, Belin C (2005) Single crystal manganese oxide multipods by oriented attachment. J Am Chem Soc 127:15034–15035. doi:10.1021/ja0555926 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Nicola Pinna
    • 1
    • 2
  • Mohamed Karmaoui
    • 1
  • Marc-Georg Willinger
    • 1
  1. 1.Department of ChemistryCICECO, University of AveiroAveiroPortugal
  2. 2.World Class University (WCU) program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, College of EngineeringSeoul National University (SNU)SeoulKorea

Personalised recommendations