Journal of Sol-Gel Science and Technology

, Volume 53, Issue 2, pp 372–377 | Cite as

Influence of Mn incorporation on the structural and optical properties of sol gel derived ZnO film

  • Yasemin Caglar
  • Saliha Ilican
  • Mujdat Caglar
  • Fahrettin Yakuphanoglu
Original paper

Abstract

Undoped and manganese doped ZnO (ZnO:Mn) films were prepared by sol gel method using spin coating technique. The effect of Mn incorporation on the structural and optical properties of the ZnO film has been investigated. The crystalline structure and orientation of the films have been investigated by using their X-ray diffraction spectra. The films exhibit a polycrystalline structure. Mn incorporation led to substantial changes in the structural characteristics of the ZnO film. The scanning electron microscopy (SEM) images of the films showed that the surface morphology of the ZnO film was affected by the Mn incorporation. The transparency of the ZnO film decreased with the Mn incorporation. The optical band gap and Urbach energy values of the ZnO and ZnO:Mn films were found to be 3.22, 3.19 eV and 0.10, 0.23 eV, respectively. The optical constants of these films, such as refractive index, extinction coefficient and optical dielectric constants were determined using transmittance and reflectance spectra. The refractive index dispersion curve of the films obeys the single oscillator model with dispersion parameters. The oscillator energy, Eo, and dispersion energy, Ed, of the films were determined 5.30 and 16.26 eV for ZnO film and 5.80 and 12.14 eV for ZnO:Mn film, respectively.

Keywords

ZnO Mn doping Sol gel Optical constants Single oscillator model 

Notes

Acknowledgments

This work was supported by Anadolu University Commission of Scientific Research Projects under grant no. 061039.

References

  1. 1.
    Yu XB, Mao LH, Zhang F, Yang LZ, Yang SP (2004) Mater Lett 58:3661CrossRefGoogle Scholar
  2. 2.
    Sharma P, Gupta A, Rao KV, Owens FJ, Sharma R, Ahuja R, Osorio Gullen JM, Johansson B, Gehring GA (2003) Nat Mater 2:673CrossRefPubMedADSGoogle Scholar
  3. 3.
    Kundaliya DC, Ogale SB, Lofland SE, Dhar S, Metting CJ, Shinde SR, Ma Z, Varughese B, Ramanujachary KV, Salamanca-Riba L, Venkatesan T (2004) Nat Mater 3:709CrossRefPubMedADSGoogle Scholar
  4. 4.
    Fukumura T, Jin Z, Ohtomo A, Koinuma H, Kawasaki M (1999) Appl Phys Lett 75:3366CrossRefADSGoogle Scholar
  5. 5.
    Lim S-W, Jeong M-C, Ham M-H, Myoung J-M (2004) Jpn J Appl Phys 43:L280CrossRefADSGoogle Scholar
  6. 6.
    Jung SW, An S-J, Yi G-C, Jung CU, Lee S, Cho S (2002) Appl Phys Lett 80:4561CrossRefADSGoogle Scholar
  7. 7.
    Shim WY, Jeon KA, Lee KI, Lee SY, Jung MH, Lee WY (2006) J Electron Mater 35:635CrossRefADSGoogle Scholar
  8. 8.
    Chikoidze E, Dumont Y, von Bardeleben HJ, Gleize J, Jomard F, Rzepka E, Berrerar G, Ferrand D, Gorochov O (2007) Appl Phys A 88:167CrossRefADSGoogle Scholar
  9. 9.
    Akyuz I, Kose S, Atay F, Bilgin V (2006) Semicond Sci Technol 21:1620CrossRefADSGoogle Scholar
  10. 10.
    Singh P, Kaushal A, Kaur D (2009) J Alloys Comp 471:11CrossRefGoogle Scholar
  11. 11.
    Yadav HK, Sreenivas K, Gupta V (2006) J Appl Phys 99:083507CrossRefADSGoogle Scholar
  12. 12.
    Wang J, Chen W, Wang M (2008) J Alloys Comp 449:44CrossRefGoogle Scholar
  13. 13.
    Deepa M, Bahadur N, Srivastava AK, Chaganti P, Sood KN (2009) J Phys Chem Solids 70:291CrossRefADSGoogle Scholar
  14. 14.
    Choi HC, Shim JH, Min BI (2006) Phys Rev B 74:172103CrossRefADSGoogle Scholar
  15. 15.
    Li JH, Shen DZ, Zhang JY, Zhao DX, Li BS, Lu YM, Liu YC, Fan XW (2006) J Magn Magn Mater 302:118CrossRefADSGoogle Scholar
  16. 16.
    Blasco J, Bartolomé F, García LM, García J (2006) J Mater Chem 16:2282CrossRefGoogle Scholar
  17. 17.
    Powder Diffraction File, Joint Committee for Powder Diffraction Studies (JCPDS) File No. 36-1451Google Scholar
  18. 18.
    Cullity BD, Stock SR (2001) Elements of X-Ray Diffraction, 3rd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  19. 19.
    Caglar M, Ilican S, Caglar Y (2009) Thin Solid Films 517:5023CrossRefGoogle Scholar
  20. 20.
    Caglar M, Ilican S, Caglar Y, Yakuphanoglu F (2008) J Mater Sci: Mater Electron 19:704CrossRefGoogle Scholar
  21. 21.
    Karipcin F, Kabalcilar E, Ilican S, Caglar Y, Caglar M (2009) Spectrochim Acta A 73:174CrossRefGoogle Scholar
  22. 22.
    Hodgson JN (1970) Optical absorption and dispersion in Solids, Chapman and Hall LTD, 11 New fetter Lane London EC4Google Scholar
  23. 23.
    Pankove JI (1971) Optical Processes in Semiconductors. Prentice-Hall Inc., Englewoord CliffsGoogle Scholar
  24. 24.
    Cody GD (1992) J Non-Cryst Solids 141:3CrossRefADSGoogle Scholar
  25. 25.
    Urbach F (1953) Phys Rev 92:1324CrossRefADSGoogle Scholar
  26. 26.
    O’Leary SK, Zukotynski S, Perz JM (1997) J Non-Cryst Solids 210:249CrossRefGoogle Scholar
  27. 27.
    Yakuphanoglu F, Caglar Y, Ilican S, Caglar M (2007) Physica B 394:86CrossRefADSGoogle Scholar
  28. 28.
    Caglar Y, Ilican S, Caglar M, Yakuphanoglu F (2007) Spectrochim Acta A 67:1113CrossRefGoogle Scholar
  29. 29.
    Malinovska DD, Nichev H, Angelov O, Grigorov V, Kamenova M (2007) Superlatt Microstruc 42:123CrossRefADSGoogle Scholar
  30. 30.
    Malinovska DD, Angelov O, Nichev H, Kamenova M, Pivin JC (2007) J Opt Adv Mater 9:2512Google Scholar
  31. 31.
    Cao Y, Miao L, Tanemura S, Tanemura M, Kuno Y, Hayashi Y, Mori Y (2006) Jpn J Appl Phys 45:1623CrossRefADSGoogle Scholar
  32. 32.
    DiDomenico M, Wemple SH (1969) J Appl Phys 40:720CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yasemin Caglar
    • 1
  • Saliha Ilican
    • 1
  • Mujdat Caglar
    • 1
  • Fahrettin Yakuphanoglu
    • 2
  1. 1.Department of Physics, Faculty of ScienceAnadolu UniversityEskisehirTurkey
  2. 2.Department of Physics, Faculty of Arts and SciencesFirat UniversityElazigTurkey

Personalised recommendations