Journal of Sol-Gel Science and Technology

, Volume 53, Issue 2, pp 176–183 | Cite as

WO3 thin film coating from H2O-controlled peroxotungstic acid and its electrochromic properties

  • Chang-Yeoul Kim
  • Min Lee
  • Seung-Hun Huh
  • Eun-Kyung Kim
Original Paper


We prepared PTA coating solution by hot plate evaporation, N2 bubbling evaporation, and rotary evaporation. N2 bubbling and rotary evaporation are very efficient way to synthesize PTA which reduces the synthesis process time to 1/5, compared to hot plate evaporation method. Another strong point is that N2 bubbling and rotary evaporation make it possible to control excess hydrogen peroxide and water contents in PTA. The PTA formula were WO3·0.13H2O2·10.0H2O for hot plate method, WO3·0.16H2O2·7.1H2O for N2 bubbling method, and WO3·0.15H2O2·3.00H2O for rotary evaporation method. Thermal analysis and mass spectroscopy analysis show that water is evaporated at around 100 °C and hydrogen peroxide is dissociated at the range of 150 and 250 °C. Amorphous phase of WO3 thin film prepared from rotary evaporated PTA solution has the best electrochromic property, light transmission difference from 91% at its bleached state and 5.5% colored state, and charge density of 22 mC/cm2. It is thought that the control of excess hydrogen peroxide and water contents in PTA is very important to enhance the electrochromic properties of WO3 thin film.


Peroxotungstic acid Electrochromic Sol gel Cyclic voltammetry Chronocoulommetry Refractive index 



The authors are appreciated for the financial support to this research by Korean Ministry of Commerce, Industry, and Energy for its financial support to this research (project no. 10006741).


  1. 1.
    Deb SK (1969) Appl Opt Suppl 3:192Google Scholar
  2. 2.
    Granqvist CG (2000) Solar Energy Mater Solar Cells 60:201–262CrossRefGoogle Scholar
  3. 3.
    Badilescu S, Minh-Ha N, Bader G, Ashrit PV, Girouard FE, Truong VV (1993) J Mol Struct 297:393CrossRefADSGoogle Scholar
  4. 4.
    Pyper O, Schollhorn R, Donkers JJTM, Krings LHM (1998) Mater Res Bull 33:1095CrossRefGoogle Scholar
  5. 5.
    Bell JM, Skryabin IL, Koplick AJ (2001) Solar Energy Mater Solar Cells 68:239–247CrossRefGoogle Scholar
  6. 6.
    Ozer N, Lampert CM (1999) Thin Solid Films 349:205–211CrossRefADSGoogle Scholar
  7. 7.
    Sharma N, Deepa M, Varshney P, Agnihotry SA (2002) J Non-Cryst Solids 306:129–137CrossRefADSGoogle Scholar
  8. 8.
    Armelao L, Bertoncello R, Granozzi G, Depaoli G, Tondello E, Battaglin G (1994) J Mater Chem 4:407CrossRefGoogle Scholar
  9. 9.
    Cronin JP, Tarico DJ, Tonazzi JCL, Agrawal A, Kennedy SR (1993) Solar Energy Mater Solar Cells 29:371CrossRefGoogle Scholar
  10. 10.
    Krings LHM, Talen W (1998) Solar Energy Mater Solar Cells 54:27CrossRefGoogle Scholar
  11. 11.
    Sharma S, Choudhary RNP (1999) Ferroelectrics 234:129CrossRefGoogle Scholar
  12. 12.
    Choudhary SN, Choudhary RNP (1998) Mater Lett 34:411CrossRefGoogle Scholar
  13. 13.
    Dickenes PG, Whittingham MS (1968) Phys Rev 22:30Google Scholar
  14. 14.
    Hamano K, Sakata H, Ema K (1985) J Phys Soc Jpn 54:2021CrossRefADSGoogle Scholar
  15. 15.
    Blasse G, Grabmaier BC (1994) Luminescent materials. Springer, BerlinGoogle Scholar
  16. 16.
    Azimirad R, Goudarzi M, Akhavan O, Moshfegh AZ (2008) Vacuum 82:821–822CrossRefGoogle Scholar
  17. 17.
    Lindquist I (1950) Acta Chem Scand 4:1066CrossRefGoogle Scholar
  18. 18.
    Okada K, Morikawa H, Marumo F, Iwai S (1975) Acta Crystallogr B 31:1200CrossRefGoogle Scholar
  19. 19.
    Range KJ, Haase H (1990) Acta Crystallogr C 46:317CrossRefGoogle Scholar
  20. 20.
    Chang LLY, Sachdev S (1975) J Am Ceram Soc 58:267CrossRefGoogle Scholar
  21. 21.
    Knee F, Condrate RA (1979) J Phys Chem Solids 40:1145CrossRefADSGoogle Scholar
  22. 22.
    Dupuis T, Viltange M (1963) Mikrochim Acta 2:232Google Scholar
  23. 23.
    Taylor D (1988) Br Ceram Trans J 87:88Google Scholar
  24. 24.
    Lee SH, Cheong HM, Zhang J-G, Tracy CE, Mascarenhas A, Benson DK, Deb SK (1999) Appl Phys Lett 74:242CrossRefADSGoogle Scholar
  25. 25.
    Kim C-Y, Cho S-G, Park S, Lim T-Y, Choi D-K (2007) Mater Sci Forum 544–545:1081–1084CrossRefGoogle Scholar
  26. 26.
    Kim CY, Kim BS, Lim TY (2003) J Jpn Ceram Soc 16:78Google Scholar
  27. 27.
    Lethy KJ, Beena D, Vinod Kumar R, Mahadevan Pillai VP, Ganesan V, Sathe V (2008) Appl Surf Sci 254:2369–2376CrossRefADSGoogle Scholar
  28. 28.
    Yamanaka K, Okamoto H, Kidou H, Kudo T (1986) Jpn J Appl Phys 25:1420–1426CrossRefADSGoogle Scholar
  29. 29.
    Nanba T, Takano S, Yasui I, Kudo T, Sol J (1991) Stat Chem 90:47–53CrossRefGoogle Scholar
  30. 30.
    Choy J-H, Kim Y-I, Yoon J-B, Choy S-H (2001) J Math Chem 11:1506–1513CrossRefGoogle Scholar
  31. 31.
    Sharma N, Deepa M, Varshney P, Agnihotry SA (2000) J Sol Gel Sci Tech 18:167–173CrossRefGoogle Scholar
  32. 32.
    Munro B, Kramer S, Zapp P, Krug H (1998) J Sol Gel Sci Tech 13:673–678CrossRefGoogle Scholar
  33. 33.
    Kondrachova L, Hahn BP, Vijayaraghavan G, Williams RD, Stevenson K (2006) Langmuir 22:10490–10498CrossRefPubMedGoogle Scholar
  34. 34.
    Nishide T, Mizukami F (1996) J Sol Gel Sci Tech 6:263–267CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Chang-Yeoul Kim
    • 1
  • Min Lee
    • 1
    • 2
  • Seung-Hun Huh
    • 1
  • Eun-Kyung Kim
    • 2
  1. 1.Nanotechnology Convergence TeamKorea Institute of Ceramic Eng. & Tech.SeoulKorea
  2. 2.Department of Chemical EngineeringYonsei UniversitySeoulSouth Korea

Personalised recommendations