Formation of cerium titanate, CeTi2O6, in sol–gel films studied by XRD and FAR infrared spectroscopy

  • Tongjit Kidchob
  • Luca Malfatti
  • Daniela Marongiu
  • Stefano Enzo
  • Plinio Innocenzi
Original Paper

Abstract

The process of formation of cerium titanate films as a function of annealing temperature and composition has been studied by combining X-ray diffraction analysis and far infrared spectroscopy. The films have been prepared by a sol–gel synthesis using metal chlorides as precursors; the synthesis allows obtaining cerium titanate films upon annealing in air. A brannerite type, CeTi2O6, phase has been identified by X-ray diffraction and Rietveld analysis on thin films. CeTi2O6 is formed upon annealing at 700 °C and in a limited range of ceria-titania mixed compositions. The far infrared spectra are useful to observe the formation of crystalline phases at the beginning of the crystallization process at lower firing temperatures, when the XRD analysis is not enough sensitive.

Keywords

Cerium titanate Titanates Thin films Far infrared spectroscopy X-ray diffraction 

References

  1. 1.
    Lev O, Wu Z, Bharathi S, Glezer V, Modestov A, Gun J, Rabinovich L, Sampath S (1997) Chem Mater 9:2354. doi:10.1021/cm970367b CrossRefGoogle Scholar
  2. 2.
    Verma A, Samanta SB, Mehra NC, Bakhshi AK, Agnihortry SA (2005) Sol Energy Mater Sol Cells 86:85. doi:10.1016/j.solmat.2004.06.008 CrossRefGoogle Scholar
  3. 3.
    Ghodsi FE, Tepehan FZ, Tepehan GG (1999) Electrochim Acta 44:3127. doi:10.1016/S0013-4686(99)00030-4 CrossRefGoogle Scholar
  4. 4.
    Zhao X, Zhao Q, Yu J, Liu BJ (2008) Non-Cryst Solids 354:1424. doi:10.1016/j.jnoncrysol.2006.10.093 CrossRefADSGoogle Scholar
  5. 5.
    Otsuka-Yao-Matsuo S, Omata T, Yoshimura M (2004) J Alloy Comp 376:262. doi:10.1016/j.jallcom.2004.01.006 CrossRefGoogle Scholar
  6. 6.
    Martos M, Julián-López B, Folgado JV, Cardoncillo E, Escribano P (2008) Eur J Inorg Chem 3163. doi:10.1002/ejic.200800303
  7. 7.
    Kim WS, Yang JK, Lee CK, Lee HS, Park HH (2008) Thin Solid Films 516:4925. doi:10.1016/j.tsf.2007.09.031 CrossRefADSGoogle Scholar
  8. 8.
    Yoshida M, Koyama N, Ashizawa T, Sakata Y, Imamura H (2007) Jpn J Appl Phys 46:977. doi:10.1143/JJAP.46.977 CrossRefADSGoogle Scholar
  9. 9.
    Kidchob T, Malfatti L, Marongiu D, Enzo S, Innocenzi P (2009) Thin Solid Films (submitted)Google Scholar
  10. 10.
    Bastow JT, Withfield HJ (1999) Chem Mater 11:3518. doi:10.1021/cm990248r CrossRefGoogle Scholar
  11. 11.
    Zhang H, Banfield JF (1999) Am Mineral 84:528Google Scholar
  12. 12.
    Gonzalez RJ, Zallen R, Berger H (1997) Phys Rev B 55:7014. doi:10.1103/PhysRevB.55.7014 CrossRefADSGoogle Scholar
  13. 13.
    Pecharromàn C, Gracìa F, Holdago JP, Ocana M, Gonzalez-Elipe AR, Bassas J, Santiso J, Figueras A (2003) J Appl Phys 93:4634. doi:10.1063/1.1560858 CrossRefADSGoogle Scholar
  14. 14.
    Helean KB, Navrotsky A, Lumpkin GR, Colella M, Lian J, Ewing RC, Ebbinghaus B, Catalano JG (2003) J Nucl Mater 320:231. doi:10.1016/S0022-3115(03)00186-7 CrossRefADSGoogle Scholar
  15. 15.
    Luo M, Chen J, Chen L, Lu J, Feng Z, Li C (2001) Chem Mater 13:197. doi:10.1021/cm000470s CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Tongjit Kidchob
    • 1
  • Luca Malfatti
    • 1
  • Daniela Marongiu
    • 1
  • Stefano Enzo
    • 2
  • Plinio Innocenzi
    • 1
  1. 1.Laboratorio di Scienza dei Materiali e Nanotecnologie, D.A.P.Università di Sassari and CR-INSTM, Palazzo Pou SalidAlghero (SS)Italy
  2. 2.Dipartimento di ChimicaUniversità di SassariSassariItaly

Personalised recommendations