Journal of Sol-Gel Science and Technology

, Volume 52, Issue 1, pp 19–23 | Cite as

New photochromic xerogels composites based on nitrosyl complexes

  • Benoit Cormary
  • Isabelle Malfant
  • Lydie Valade
Fast Track Communications


New photoswitchable hybrid materials based on mononitrosyl complexes with excellent optical properties have been obtained by sol–gel process. Inclusion in silica matrix prepared from tetramethoxysilane precursor leads to new materials in which the ruthenium complex [RuCl(NO)py4](PF6)2·1/2H2O (py = pyridine) is stabilized as crystalline nanoparticles with diameters between 2 and 15 nm. Photochromic properties are maintained and have been evidenced by infrared spectroscopy under irradiation (λ = 473 nm) at low temperature (T = 100 K). The reversible transfer from the ground state (GS) to the metastable state (MS1) is about 40% in the composite, which is close to the value observed on the most studied sodium nitroprusside (50% on pure material).


Photochromism Xerogel Metastable state Nitrosyl complexes Nanoparticles 


  1. 1.
    Kawata S, Kawata Y (2000) Chem Rev 100:1777PubMedCrossRefGoogle Scholar
  2. 2.
    Günter P, Huignard JP (eds) (1988) Photorefractive materials and their application. Springer, BerlinGoogle Scholar
  3. 3.
    Imlau M, Fally M, Weisemoeller T, Schaniel D, Herth P, Woike T (2006) Phys Rev B Condens Matter Mater Phys 73(20):205113/1–205113/9ADSGoogle Scholar
  4. 4.
    Imlau M, Haussühl S, Woike T, Schieder R, Angelov V, Rupp RA, Schwarz K (1999) Appl Phys B 68:877CrossRefADSGoogle Scholar
  5. 5.
    Woike T, Kirchner W, Shetter G, Barthel T, Hyung-sang K, Haussühl S (1994) Opt Commun 106:6CrossRefADSGoogle Scholar
  6. 6.
    Schaniel D, Imlau M, Weisemoeller T, Woike T, Krämer KW, Güdel H-U (2007) Adv mater 19:723CrossRefGoogle Scholar
  7. 7.
    Maniloff ES, Vacar D, McBranch DW, Wang H-L, Mattes B, Gao J, Heeger AJ (1997) Opt Commun 14:243CrossRefADSGoogle Scholar
  8. 8.
    Pham VP, Manivannnan G, Lessard RA, Po R (1995) Opt Mater 4:467CrossRefGoogle Scholar
  9. 9.
    Gutlich P, Garcia Y, Woike T (2001) Coord Chem Rev 219–221:839–879CrossRefGoogle Scholar
  10. 10.
    Schaniel D, Cormary B, Malfant I, Valade L, Woike T, Delley B, Kraemer KW, Guedel H-U (2007) Phys Chem Chem Phys 9(28):3717PubMedCrossRefGoogle Scholar
  11. 11.
    Brinker CJ, Scherer GW (1990) Sol–gel science. Academic Press, San DiegoGoogle Scholar
  12. 12.
    Moore JG, Lochner EJ, Siegman AE (2007) Angew Chem Int Ed 46:8653CrossRefGoogle Scholar
  13. 13.
    Willemin S, Arrachart G, Lecren L, Larionova J, Coradin T, Clerac R, Mallah T, Guérin C, Sanchez C (2003) New J Chem 27:1533CrossRefGoogle Scholar
  14. 14.
    Bentivegna F, Ferre J, Nyvlt M, Jamet JP, Imhoff D, Canva M, Brun A, Veillet P, Visnovsky S, Chaput F, Boillot J-P (1998) J Appl Phys 83:7776CrossRefADSGoogle Scholar
  15. 15.
    Levy D, Avnir D (1988) J Phys Chem 92:4734Google Scholar
  16. 16.
    Nogami M, Abe Y (1995) J Mater Sci 30:5789CrossRefADSGoogle Scholar
  17. 17.
    Boillot J-P, Biteau J, Chaput F, Gacoin T, Brun A, Darracq B, Geordes P, Levy Y (1998) Pure Appl Opt 7:169Google Scholar
  18. 18.
    Spagnoli S, Block D, Botzung-Appert E, Colombier I, Baldeck PL, Ibanez A, Corval A (2005) J Phys Chem B 109:8587Google Scholar
  19. 19.
    Levy D (1997) Chem Mater 9:2666Google Scholar
  20. 20.
    Schuy A, Woike T, Schaniel D (2009) J Sol–Gel Sci Tec 50:403Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Benoit Cormary
    • 1
    • 2
  • Isabelle Malfant
    • 1
    • 2
  • Lydie Valade
    • 1
    • 2
  1. 1.CNRS-LCC (Laboratoire de Chimie de Coordination)ToulouseFrance
  2. 2.Université de Toulouse; UPS, INPT, LCCToulouseFrance

Personalised recommendations