Advertisement

Structure modifications during thermal processing of silicon alkoxyde derived silica-iron oxide nanocomposites

  • D. Ortega
  • M. Ramírez-del-Solar
  • C. Barrera-Solano
  • M. Domínguez
Original Paper

Abstract

The effects of iron concentration in the matrix structure of monolithic γ-Fe2O3/SiO2 nanocomposites with different thermal processing have been studied by means of X-ray diffraction, Fourier transform infrared spectroscopy, temperature programmed decomposition-mass spectrometry and thermogravimetric analysis. The chemical changes occurring during the formation and subsequent growth of iron oxide nanoparticles, have been found to modify the formation process of alkoxysilane derived xerogels as a consequence of the competition for water molecules in the reaction medium. Specifically, the water releasing from the xerogels is shifted towards higher temperatures as a consequence of Fe3+ aquocomplexes formed in early stages of the synthesis. The iron content is also associated with changes in the polycondensation of the silica matrix and in the performance of chemical additives used to preserve the mechanical properties of the studied nanocomposites. These modifications extend to the thermal processing of samples, hindering the decomposition and subsequent removal of residues.

Keywords

Xerogels Nanocomposites Maghemite Thermal processing 

Notes

Acknowledgments

The authors are gratefully thanked to M. P. Yeste and J. M. Gatica from the Catalysis & Chemistry of Solids group at the University of Cádiz for FTIR and TPD-MS measurements. D. Ortega expresses his thanks to the program for specialization of researchers from the UPV/EHU Office of the Vice-Chancellor for Research. Authors also would like to acknowledge the Spanish MCyT for financial support under project MAT2002-02179.

References

  1. 1.
    Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) J Compos Mater 40:1511–1575CrossRefGoogle Scholar
  2. 2.
    Schmidt H, Jonschker G, Goedicke S, Mennig M (2000) J Sol–Gel Sci Technol 19:39–51CrossRefGoogle Scholar
  3. 3.
    Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I (2005) Mater Sci Eng, A 393:1–11CrossRefGoogle Scholar
  4. 4.
    Meldrum A, Haglund RFJ, Boatner LA, White CW (2001) Adv Mater 13:1431–1444CrossRefGoogle Scholar
  5. 5.
    Porter D, Metcalfe E, Thomas MJK (2000) Fire Mater 24:45–52CrossRefGoogle Scholar
  6. 6.
    Zhang S, Sun D, Fu Y, Du H (2003) Surf Coat Technol 167:113–119CrossRefGoogle Scholar
  7. 7.
    Gangopadhyay R, De A (2000) Chem Mater 12:608–622CrossRefGoogle Scholar
  8. 8.
    Beecroft LL, Ober CK (1997) Chem Mater 9:1302–1317CrossRefGoogle Scholar
  9. 9.
    Klein LC (1993) Annu Rev Mater Sci 23:437–452CrossRefGoogle Scholar
  10. 10.
    Bentivegna F, Nyvlt M, Ferré J, Jamet JP, Brun A, Visnovsky S, Urban R (2006) J Appl Phys 85:2270–2278CrossRefADSGoogle Scholar
  11. 11.
    Katsukawa H, Ishikawa H, Okajima H, Cease TW (1996) IEEE Trans Power Del 11:702–707CrossRefGoogle Scholar
  12. 12.
    Ortega D, Garitaonandia JS, Barrera-Solano C, Ramirez-del-Solar M, Blanco E, Dominguez M (2006) J Non-Cryst Solids 352:2801–2810CrossRefADSGoogle Scholar
  13. 13.
    Press WH, Teukolsky SA (1990) Comput Phys 4:669–672Google Scholar
  14. 14.
    Bernal S, García R, Rodríguez-Izquierdo JM (1983) Thermochim Acta 70:249–256CrossRefGoogle Scholar
  15. 15.
    Orcel G, Phalippou J, Hench LL (1988) J Non-Cryst Solids 104:170CrossRefADSGoogle Scholar
  16. 16.
    Brinker CJ, Keefer KD, Schaefer DW, Ashley CS (1982) J Non-Cryst Solids 48:47–64CrossRefADSGoogle Scholar
  17. 17.
    Niznansky D, Rehspringer JL (1995) J Non-Cryst Solids 180:191–196CrossRefADSGoogle Scholar
  18. 18.
    Orcel G, Hench LL (1986) J Non-Cryst Solids 79:177–194CrossRefADSGoogle Scholar
  19. 19.
    Orcel G, Phalippou J, Hench LL (1986) J Non-Cryst Solids 88:114–130CrossRefADSGoogle Scholar
  20. 20.
    Montero I, Galán L, Najmi O, Albella JM (1994) Phys Rev B 50:4881–4884CrossRefADSGoogle Scholar
  21. 21.
    Viart N, Rehspringer JL (1996) J Non-Cryst Solids 195:223–231CrossRefADSGoogle Scholar
  22. 22.
    Rubio F, Rubio J, Oteo JL (1998) Spectrosc Lett 31:199–219CrossRefADSGoogle Scholar
  23. 23.
    Pouchert CJ (1981) The Aldrich library of infrared spectra. Aldrich Chemical Company, MilwaukeeGoogle Scholar
  24. 24.
    Falk M, Huang C-H, Knop O (1975) Can J Chem 53:51–57CrossRefGoogle Scholar
  25. 25.
    Weckler B, Lutz HD (1998) Eur J Solid State Inorg Chem 35:531–544CrossRefGoogle Scholar
  26. 26.
    Ishikawa T, Takeuchi K, Kandori K, Nakayama T (2005) Colloids Surf, A 266:155–159CrossRefGoogle Scholar
  27. 27.
    Murphy PJ, Posner AM, Quirk JP (1976) J Colloid Interface Sci 56:312–319CrossRefGoogle Scholar
  28. 28.
    Kelts LW, Armstrong NJ (1988) In: Brinker CJ, Clark DE, Ulrich DR (eds) Better ceramics through chemistry III, vol 121. Materials Research Society Symposium Proceedings, Pittsburgh, PAGoogle Scholar
  29. 29.
    Klemperer WG, Mainz VV, Ramamurthi SD, Rosenberg FS (1988) In: Brinker CJ, Clark DE, Ulrich DR (eds) Better ceramics through chemistry III, vol 121. Materials Research Society Symposium Proceedings, Pittsburgh, PAGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • D. Ortega
    • 1
  • M. Ramírez-del-Solar
    • 2
  • C. Barrera-Solano
    • 2
  • M. Domínguez
    • 2
  1. 1.Fisika Aplikatua II Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU)BilbaoSpain
  2. 2.Department of Condensed Matter Physics, Faculty of ScienceUniversity of CádizPuerto Real (Cádiz)Spain

Personalised recommendations