Journal of Sol-Gel Science and Technology

, Volume 50, Issue 3, pp 328–336 | Cite as

Synthesis of silica nanoparticles by modified sol–gel process: the effect of mixing modes of the reactants and drying techniques

Original Paper


A modified preparation of silica nanoparticles via sol–gel process was described. The ability to control the particle size and distribution was found highly dependent on mixing modes of the reactants and drying techniques. The mixture of tetraethoxysilane and ethanol followed by addition of water (Mode-A) produced monodispersed powder with an average particle size of 10.6 ± 1.40 nm with a narrow size distribution. The freeze drying technique (FD) further improved the quality of powder. In addition, the freeze dried samples have shown unique TGA decomposition steps which might be related to the well-defined structure of silica nanoparticles as compared to the heat dried samples. DSC analysis showed that FD preserved the silica surface with low shrinkage and generated remarkably well-order, narrow and bigger pore size and pore volume and also large endothermic enthalpies (ΔHFD = −688 J g−1 vs. ΔHHD = −617 J g−1) that lead to easy escape of physically adsorbed water from the pore at lower temperature.


Silica nanoparticles Sol–gel Freeze drying 


  1. 1.
    Iller RK (1979) The chemistry of silica. Wiley, New YorkGoogle Scholar
  2. 2.
    Hench LL, West JK (1990) Chem Rev 90:33CrossRefGoogle Scholar
  3. 3.
    Matsoukas T, Gulari E (1998) J Colloid Interface Sci 124:252. doi:10.1016/0021-9797(88)90346-3 CrossRefGoogle Scholar
  4. 4.
    Matsoukas T, Gulari E (1989) J Colloid Interface Sci 132:13. doi:10.1016/0021-9797(89)90210-5 CrossRefGoogle Scholar
  5. 5.
    Bogush GH, Zukoski CF (1991) J Colloid Interface Sci 142:19. doi:10.1016/0021-9797(91)90030-C CrossRefGoogle Scholar
  6. 6.
    Chu L, Tejedor-Tejedor MI, Anderson MA (1997) Microporous Mater 8:207. doi:10.1016/S0927-6513(96)00068-5 CrossRefGoogle Scholar
  7. 7.
    Meixner DL, Dyer PN (1999) J Sol-Gel Sci Technol 14:223. doi:10.1023/A:1008774827602 CrossRefGoogle Scholar
  8. 8.
    Colomer MT, Anderson MA (2001) J Non-Cryst Solids 290:93. doi:10.1016/S0022-3093(01)00815-8 CrossRefADSGoogle Scholar
  9. 9.
    Enomoto N, Kumagai A, Hojo J (2005) J Ceram Soc Jpn 113:340. doi:10.2109/jcersj.113.340 CrossRefGoogle Scholar
  10. 10.
    Stöber W, Fink A, Bohn E (1968) J Colloid Interface Sci 26:62. doi:10.1016/0021-9797(68)90272-5 CrossRefGoogle Scholar
  11. 11.
    Van Helden AK, Jansen JW, Vrij A (1981) J Colloid Interface Sci 81:354. doi:10.1016/0021-9797(81)90417-3 CrossRefGoogle Scholar
  12. 12.
    Tan CG, Bowen BD, Epstein N (1987) J Colloid Interface Sci 118:290. doi:10.1016/0021-9797(87)90458-9 CrossRefGoogle Scholar
  13. 13.
    Enomoto N, Koyano T, Nakagawa Z (1996) Ultrason Sonochem 3:S105. doi:10.1016/1350-1477(96)00004-W CrossRefGoogle Scholar
  14. 14.
    Chen SL, Dong P, Yang GH (1997) J Colloid Interface Sci 189:268. doi:10.1006/jcis.1997.4809 CrossRefGoogle Scholar
  15. 15.
    Sadasivan S, Rasmussen DH, Chen FP, Kannabiran RK (1998) Colloid Surf A 132:45. doi:10.1016/S0927-7757(97)00148-9 CrossRefGoogle Scholar
  16. 16.
    Lee K, Sathyagal AN, McCormick AV (1998) Colloid Surf A 144:115. doi:10.1016/S0927-7757(98)00566-4 CrossRefGoogle Scholar
  17. 17.
    Park SK, Kim KD, Kim HT (2002) Colloid Surf A 197:7. doi:10.1016/S0927-7757(01)00683-5 CrossRefGoogle Scholar
  18. 18.
    Green DL, Jayasundara S, Lam YF, Harris MT (2003) J Non-Cryst Solids 315:166. doi:10.1016/S0022-3093(02)01577-6 CrossRefADSGoogle Scholar
  19. 19.
    Green DL, Lin JS, Lam YF, Hu MZC, Schaefer DW, Harris MT (2003) J Colloid Interface Sci 266:346. doi:10.1016/S0021-9797(03)00610-6 PubMedCrossRefGoogle Scholar
  20. 20.
    Nagao D, Osuzu H, Yamada A, Mine E, Kobayashi Y, Konno M (2004) J Colloid Interface Sci 279:143. doi:10.1016/j.jcis.2004.06.041 PubMedCrossRefGoogle Scholar
  21. 21.
    Kim SS, Kim HS, Kim SG, Kim WS (2004) Ceram Int 30:171. doi:10.1016/S0272-8842(03)00085-3 CrossRefGoogle Scholar
  22. 22.
    Rahman IA, Vejayakumaran P, Sipaut CS, Ismail J, Abu Bakar M, Adnan R, Chee CK (2006) Ceram Int 32:691. doi:10.1016/j.ceramint.2005.05.004 CrossRefGoogle Scholar
  23. 23.
    Rahman IA, Vejayakumaran P, Sipaut CS, Ismail J, Abu Bakar M, Adnan R, Chee CK (2007) Colloid Surf A 294:102. doi:10.1016/j.colsurfa.2006.08.001 CrossRefGoogle Scholar
  24. 24.
    Bogush GH, Zukoski CF (1991) J Colloid Interface Sci 142:1. doi:10.1016/0021-9797(91)90029-8 CrossRefGoogle Scholar
  25. 25.
    Greenwood NN, Earnshaw A (1998) Chemistry of the elements, 2nd edn. Butterworth Heinemann, OxfordGoogle Scholar
  26. 26.
    Gregory JK, Clary DC, Liu K, Brown MG, Saykally RJ (1997) Science 275:814. doi:10.1126/science.275.5301.814 PubMedCrossRefGoogle Scholar
  27. 27.
    Brinker CJ, Scherer GW (1990) Sol-gel science. Academic Press, San DiegoGoogle Scholar
  28. 28.
    Chen G, Wang W (2007) Dry Technol 25:29. doi:10.1080/07373930601161179 CrossRefGoogle Scholar
  29. 29.
    Choi MJ, Briançon S, Andrieu J, Min SG, Fessi H (2004) Dry Technol 22:335. doi:10.1081/DRT-120028238 CrossRefGoogle Scholar
  30. 30.
    Brunauer S, Deming LS, Deming WE, Teller E (1940) J Am Chem Soc 62:1723. doi:10.1021/ja01864a025 CrossRefGoogle Scholar
  31. 31.
    Vansant EF, Van Der Voort P, Vrancken KC (1995) Characterization and chemical modification of the silica surface. Elsevier, AmsterdamGoogle Scholar
  32. 32.
    Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373. doi:10.1021/ja01145a126 CrossRefGoogle Scholar
  33. 33.
    Yuaga S, Okabayahi M, Ohno H, Suzuki K, Kusumoto K (1988) US Patent 4, 764:497Google Scholar
  34. 34.
    Ek S, Root A, Peussa M, Niinistö L (2001) Thermochim Acta 379:201. doi:10.1016/S0040-6031(01)00618-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Dental Sciences, Health CampusUniversiti Sains MalaysiaKubang KerianMalaysia
  2. 2.School of Chemical SciencesUniversiti Sains MalaysiaMindenMalaysia

Personalised recommendations