Advertisement

Journal of Sol-Gel Science and Technology

, Volume 50, Issue 3, pp 353–358 | Cite as

Effect of 3-glycidoxypropyltrimethoxysilane precursor on the properties of ambient pressure dried silica aerogels

  • P. Shajesh
  • S. Smitha
  • P. R. Aravind
  • K. G. K. WarrierEmail author
Original Paper

Abstract

The effect of an organically modified precursor, 3-glycidoxypropyltrimethoxysilane in an ambient pressure process involving aging in silane solution for silica aerogels is presented. The effect of increasing trialkoxysilane/tetraalkoxysilane precursor ratio and the influence of water to Si molar ratio on the gelation and adsorption properties were investigated. An optimum water to Si molar ratio (8) gave the fastest gelation for all precursor ratios indicating a balance between the increase in rate of hydrolysis and a decrease in concentration of the monomers. Surface area analysis proved that in the dried gel, the organic groups are largely present on the pore walls and prevent the condensation of the silanol groups during drying. This in turn prevents pore collapse and further increases the total pore volume. The inclusion of the organically functionalised silane in the process further enhances the ambient pressure drying through this effect.

Keywords

Aerogel Ambient pressure Sol–gel Glycidoxypropyltrimethoxysilane 

Notes

Acknowledgments

Authors P. S., S. S., and P. R. A thank CSIR for their fellowships.

References

  1. 1.
    J Non-Cryst Solids 285:1–357 (2001)Google Scholar
  2. 2.
    J Non-Cryst Solids 350:1–404 (2004)Google Scholar
  3. 3.
    Pierre AC, Pajonk GM (2002) Chem Rev 102:4243–4265PubMedCrossRefGoogle Scholar
  4. 4.
    Fidalgo A, Rosa ME, Ilharco LM (2003) Chem Mater 15:2186–2192CrossRefGoogle Scholar
  5. 5.
    Shlyakhtina AV, Oh YJ (2007) In: Proceedings of the 2nd IEEE international conference on nano/micro engineered and molecular systems NEMS '07, pp 365–370Google Scholar
  6. 6.
    Schwertfeger F, Frank D, Schmidt M (1998) J Non-Cryst Solids 225:24–29CrossRefADSGoogle Scholar
  7. 7.
    Soleimani Dorcheh A, Abbasi MH (2008) J Mater Process Technol 199:10–26CrossRefGoogle Scholar
  8. 8.
    Prakash SS, Brinker CJ, Hurd AJ et al (1995) Nature 374:439–443CrossRefADSGoogle Scholar
  9. 9.
    Venkateswara Rao A, Nilsen E, Einarsrud M-A (2001) J Non-Cryst Solids 296:165–171CrossRefADSGoogle Scholar
  10. 10.
    Hwang S-W, Jung H-H, Hyun S-H et al (2007) J Sol–Gel Sci Technol 41:139–146CrossRefGoogle Scholar
  11. 11.
    Einarsrud M-A (1998) J Non-Cryst Solids 225:1–7CrossRefADSGoogle Scholar
  12. 12.
    Einarsrud M-A, Nilsen E (1998) J Non-Cryst Solids 226:122–128CrossRefADSGoogle Scholar
  13. 13.
    Smitha S, Shajesh P, Aravind PR et al (2006) Microporous Mesoporous Mater 91:286–292CrossRefGoogle Scholar
  14. 14.
    Smitha S, Shajesh P, Kumar SR et al (2007) J Porous Mater 14:1–6CrossRefGoogle Scholar
  15. 15.
    Hüsing Nicola, Schubert Ulrich (1998) Angew Chem Int Ed 37:22–45CrossRefGoogle Scholar
  16. 16.
    Leventis N, Sotiriou-Leventis C, Zhang G et al (2002) Nano Lett 2:957–960CrossRefGoogle Scholar
  17. 17.
    Kanamori K, Aizawa M, Nakanishi K, Hanada T (2007) Adv Mater 19:1589–1593CrossRefGoogle Scholar
  18. 18.
    Metroke TL, Kachurina O, Knobbe ET (2002) Prog Org Coat 44:295–305CrossRefGoogle Scholar
  19. 19.
    Tadanaga K, Yoshida H, Matsuda A et al (2003) Chem Mater 15:1910–1912CrossRefGoogle Scholar
  20. 20.
    Innocenzi P, Miorin E, Brusatin G et al (2002) Chem Mater 14:3758–3766CrossRefGoogle Scholar
  21. 21.
    Dong H, Brook MA, Brennan JD (2005) Chem Mater 17:2807–2816CrossRefGoogle Scholar
  22. 22.
    Loy DA, Baugher BM, Baugher CR et al (2000) Chem Mater 12:3624–3632CrossRefGoogle Scholar
  23. 23.
    Dong H, Zhang Z, Lee M-H et al (2007) J Sol–Gel Sci Technol 41:11–17CrossRefGoogle Scholar
  24. 24.
    Buyl F, Kretschmer A (2008) J Adhes 84:125–142CrossRefGoogle Scholar
  25. 25.
    Shen SK, Hu DD (2007) J Phys Chem B 111:7963–7971PubMedCrossRefGoogle Scholar
  26. 26.
    Pena-Alonso R, Rubio F, Rubio J et al (2007) J Mater Sci 42:595–603CrossRefADSGoogle Scholar
  27. 27.
    French SA, Sokol AA, Catlow CRA et al (2006) J Phys Chem B 110:24311–24317PubMedCrossRefGoogle Scholar
  28. 28.
    Gigant K, Posset U, Schottner G (2002) Appl Spectrosc 56:762–769CrossRefADSGoogle Scholar
  29. 29.
    Loy DA, Mather B, Straumanis AR et al (2004) Chem Mater 16:2041–2043CrossRefGoogle Scholar
  30. 30.
    Husing N, Schubert U, Misof K et al (1998) Chem Mater 10:3024–3032CrossRefGoogle Scholar
  31. 31.
    Aravind PR, Mukundan P, Pillai PK et al (2006) Microporous Mesoporous Mater 96:14–20CrossRefGoogle Scholar
  32. 32.
    Jabbour J, Calas S, Gatti S et al (2008) J Non-Cryst Solids 354:651–658CrossRefADSGoogle Scholar
  33. 33.
    El Rassy H, Pierre AC (2005) J Non-Cryst Solids 351:1603–1610CrossRefADSGoogle Scholar
  34. 34.
    Yoda S, Ohshima S (1999) J Non-Cryst Solids 248:224–234CrossRefADSGoogle Scholar
  35. 35.
    Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • P. Shajesh
    • 1
  • S. Smitha
    • 1
  • P. R. Aravind
    • 1
  • K. G. K. Warrier
    • 1
    Email author
  1. 1.Materials & Minerals DivisionNational Institute for Interdisciplinary Science and TechnologyTrivandrumIndia

Personalised recommendations