Journal of Sol-Gel Science and Technology

, Volume 49, Issue 3, pp 285–292 | Cite as

Synthesis of transparent silica aerogels with low density and better hydrophobicity by controlled sol–gel route and subsequent atmospheric pressure drying

  • Poonam M. Shewale
  • A. Venkateswara Rao
  • A. Parvathy Rao
  • S. D. Bhagat
Original Paper


In the present paper, attempts have been made to produce transparent silica aerogels with low density and better hydrophobicity by controlled sol–gel route and subsequent atmospheric pressure drying. The hydrogels were prepared by hydrolysis and polycondensation of sodium silicate (Na2SiO3) in the presence of acetic acid catalyzed water followed by several washing steps with water, methanol and hexane, respectively. The surface modification of the wet gel was carried out using a mixture of hexamethyldisilazane (HMDS) in hexane. Since, the sol–gel chemistry provides a straightforward method to control the physical and optical properties of the aerogels, the influence of various sol–gel parameters viz. gel washing time, molar ratios of CH3COOH/Na2SiO3 and HMDS/Na2SiO3 and silylation period on the physical and optical properties of the aerogels have been investigated. The aerogels have been characterized by bulk density, Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric and Differential Thermal Analysis (TG-DTA), Atomic Absorption Spectroscopy (AAS), Scanning Electron Microscopy (SEM) studies and Contact angle measurements.


Sodium silicate Ambient pressure drying Aerogel Hydrophobic Transparent 



The authors are grateful to the Condensed Matter Advisory Committee, Department of Science and Technology (DST), New Delhi, Government of India, for the financial support for this work through a major research project on “Aerogels” (no. SR/S2/CMP-67/2006). Poonam M. Shewale is highly thankful to the Shivaji University Kolhapur for providing ‘Departmental Research Fellowship’. One of the authors Dr. A Parvathy Rao is highly thankful to the DST for the Senior Research Associateship.


  1. 1.
    Kocon L, Despetis F, Phalippou J (1998) J Non-Cryst Solids 225:96. doi: 10.1016/S0022-3093(98)00322-6 CrossRefGoogle Scholar
  2. 2.
    Haranath D, Pajonk GM, Wagh PB, Venkateswara Rao A (1997) Mater Chem Phys 49:129. doi: 10.1016/S0254-0584(96)01924-4 CrossRefGoogle Scholar
  3. 3.
    Zhou B (1998) J Non-Cryst Solids 225:101. doi: 10.1016/S0022-3093(98)00106-9 CrossRefGoogle Scholar
  4. 4.
    Smith D, Maskara A, Boes U (1998) J Non-Cryst Solids 225:254. doi: 10.1016/S0022-3093(98)00125-2 CrossRefGoogle Scholar
  5. 5.
    Carlson G, Lewis D, Mckinley K, Richardson J, Tillostson T (1995) J Non-Cryst Solids 186:372. doi: 10.1016/0022-3093(95)00069-0 CrossRefADSGoogle Scholar
  6. 6.
    Schwertfeger F, Frank D, Schmidt M (1928) J Non-Cryst Solids 225:24. doi: 10.1016/S0022-3093(98)00102-1 CrossRefGoogle Scholar
  7. 7.
    Rao AP, Rao AV, Pajonk GM (2005) J Sol-Gel Sci Technol 36:285. doi: 10.1007/s10971-005-4662-1 CrossRefGoogle Scholar
  8. 8.
    Prakash SS, Brinker CJ, Hurd AJ, Rao SM (1995) Nature 374:439. doi: 10.1038/374439a0 CrossRefADSGoogle Scholar
  9. 9.
    Heimenz PC (1977) Principles of colloid and surface chemistry. Marcel Dekkar, New YorkGoogle Scholar
  10. 10.
    Kistler SS (1932) J Phys Chem 36:52. doi: 10.1021/j150331a003 CrossRefGoogle Scholar
  11. 11.
    Bikerman JJ (1958) Surface chemistry: theory and applications, 2nd edn. Academic Press, New York, p 343Google Scholar
  12. 12.
    Venkateswara Rao A, Pajonk GM (2001) J Non-Cryst Solids 285:202. doi: 10.1016/S0022-3093(01)00454-9 CrossRefADSGoogle Scholar
  13. 13.
    Einarsrud MA, Nilsen E, Riggaci A, Pajonk GM, Buathier S, Valette D, Durant M, Chevalier B, Nitz P, Ehrburger-Dolle F (2001) J Non-Cryst Solids 285:4. doi: 10.1016/S0022-3093(01)00423-9 CrossRefGoogle Scholar
  14. 14.
    Reichenauer G (2004) J Non-Cryst Solids 350:3482Google Scholar
  15. 15.
    Parvathy Rao A, Pajonk GM, Rao AV (2005) J Mater Sci 40:3481. doi: 10.1007/s10853-005-2853-3 CrossRefGoogle Scholar
  16. 16.
    Kondoh E et al (2000) Jpn J Appl Phys 39(7A, pt.1):3919CrossRefADSGoogle Scholar
  17. 17.
    Gun’ko VM, Vedamuthu MS, Henderson GL, Blitz JP (2000) J Colloid Interface Sci 228:157. doi: 10.1006/jcis.2000.6934 PubMedCrossRefGoogle Scholar
  18. 18.
    Hering N, Schriber K, Riedel R, Lichtenberger O, Woltersodorf J (2001) Appl Organomental Chem 15:879CrossRefGoogle Scholar
  19. 19.
    Yoldas BE (1984) J Non-Cryst Solids 63:145. doi: 10.1016/0022-3093(84)90393-4 CrossRefADSGoogle Scholar
  20. 20.
    Smith CE, Mueller D, Matz P, Reidy R (2006) In: Tsui TY, Joo YC, Volinsky AA, Michaelson L, Lane M (eds) MRS proceeding, vol 914, F04-04Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Poonam M. Shewale
    • 1
  • A. Venkateswara Rao
    • 1
  • A. Parvathy Rao
    • 1
  • S. D. Bhagat
    • 1
  1. 1.Air Glass Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia

Personalised recommendations