Fast sol–gel technology: from fabrication to applications

Special Edition: Celebrating the 60th Anniversary of Professor David Avnir

Abstract

A novel method to prepare crack-free sol–gel materials without shrinkage is reviewed. The method allows fabrication of a viscous sol–gel resin in a few minutes followed by either thermal-curing or UV-curing requiring several hours or several minutes, respectively. The method is distinguished by the short time required to achieve a solid monolith. The fast sol–gel method uses a combination of organically modified alkoxides with traditional alkoxides as precursors, to produce a final product which is an organic-inorganic hybrid with properties that vary from silicone rubbers to silica glass. Optical and physical properties, such as refractive index and thermal expansion, can be engineered by controlling the ratio between the precursors. This class of materials is a promising candidate for preparation of optical elements such as waveguides and submicron structured replicas and can also be used as an optical bonding material. This paper reviews the fast sol–gel technology, as well as methods to characterize the process and its final products. Various applications of fast sol–gel materials are presented.

Keywords

Sol–gel method Organic/inorganic hybrids ORMOSILs Refractive index Optical bonding 

References

  1. 1.
    Klein LC (1988) Sol–gel technology for thin films, performs, electronics, and specialty shapes. Noyes, New JerseyGoogle Scholar
  2. 2.
    Livage J, Henry M, Sanchez C (1988) Prog Solid-State Chem 18:259CrossRefGoogle Scholar
  3. 3.
    Brinker CJ, Scherer GW (1990) Sol–gel science. Academic Press, San DiegoGoogle Scholar
  4. 4.
    Hench LL, West JK (1990) Chem Rev 90:61CrossRefGoogle Scholar
  5. 5.
    Schmidt H (1990) Mater Res Symp Proc 171:3Google Scholar
  6. 6.
    Klein LC (1993) Sol–gel optics: processing and applications. Kluwer Academic Publishers, BostonGoogle Scholar
  7. 7.
    Dislich H (1988) In: Klein LC (ed) Sol–gel technology for thin films, performs, electronics and specialty shapes, chap 4. Noyes, New JerseyGoogle Scholar
  8. 8.
    Gvishi R, Reisfeld R (1991) J Non-Cryst Solids 128:69CrossRefADSGoogle Scholar
  9. 9.
    Schmidt H (1989) In: Aegerter MA (ed) Sol-gel science and technology. World ScientificGoogle Scholar
  10. 10.
    Pope EJA, Asami M, Mackenzie JD (1989) J Mater Res 4:1018CrossRefADSGoogle Scholar
  11. 11.
    Gvishi R, Bhalwaker J, Kumar DN, Ruland G, Narang U, Prasad PN (1995) Chem Mater 7:2199CrossRefGoogle Scholar
  12. 12.
    Schmidt H (1984) In: Brinker CJ, Clark DE, Ulrich DR (eds) Better ceramics through chemistry. North-Holland, New York, pp 327–335Google Scholar
  13. 13.
    Philipp G, Schmidt H (1984) J Non-Cryst Solids 63:283CrossRefADSGoogle Scholar
  14. 14.
    Del Monte F, Cheben P, Grover CP, Mackenzie JD (1999) J Sol–Gel Sci Technol 15:73CrossRefGoogle Scholar
  15. 15.
    Altman JC, Stone RE, Dunn B, Nishida F (1991) IEEE J Photo Tech 3:189CrossRefADSGoogle Scholar
  16. 16.
    Wojcik AB, Klein LC (1995) J Sol–Gel Sci Technol 4:57CrossRefGoogle Scholar
  17. 17.
    Reisfeld R, Gvishi R, Burshtein Z (1995) J Sol–Gel Sci Technol 4:49CrossRefGoogle Scholar
  18. 18.
    Sorek Y, Reisfeld R, Finkelstein I, Ruschin S (1995) Appl Phys Lett 66:1169CrossRefADSGoogle Scholar
  19. 19.
    Alonso B, Massiot D, Babonneau F, Brusatin G, Giustina GD, Kidchob T, Innocenzi P (2005) Chem Mater 17:9CrossRefGoogle Scholar
  20. 20.
    Wojtach K, Lackz M, Cholewa-Kowalska K, Olejniczak Z, Sokolowska J (2003) J Non-Cryst Solids 353:2099CrossRefADSGoogle Scholar
  21. 21.
    Pellice SA, Williams RJJ, Sobrados I, Sanz J, Castrro Y, Aparicio M, Duran A (2006) J Mater Chem 16:3318CrossRefGoogle Scholar
  22. 22.
    Buestrich R, Kahlenberg F, Popall M, Dannberg P, Muller-Fiedler R, Rosch O (2001) J Sol–Gel Sci Technol 20:181CrossRefGoogle Scholar
  23. 23.
    Hass KH, Amberg-Schwab S, Rose K (1999) Thin Solid Films 351:198CrossRefADSGoogle Scholar
  24. 24.
    Kron J, Schottner G, Deichmann KJ (2001) Thin Solid Films 392:236CrossRefADSGoogle Scholar
  25. 25.
    Hass KH, Amberg-Schwab S, Rose K, Schottner G (1999) Surf Coat Technol 111:72CrossRefGoogle Scholar
  26. 26.
    Haruvy Y, Heller A, Webber SE (1992) In: Bein T (ed) Supramolecular architecture: synthetic control in thin films and solids, chap 28, Proc ACS SymGoogle Scholar
  27. 27.
    Fricke J (1986) Aerogels. Springer-Verlag, BerlinGoogle Scholar
  28. 28.
    Fricke J, Reichenanauer G (1987) J Non-Cryst Solids 95:1135CrossRefADSGoogle Scholar
  29. 29.
    Avnir D (1987) J Non-Cryst Solids 192:180CrossRefADSGoogle Scholar
  30. 30.
    Gvishi R, Strum G, Shitrit N, Dror R (2008) Opt Mater 30:1755CrossRefADSGoogle Scholar
  31. 31.
    Gvishi R, Englander A, Peleg G (2008) J Sol–Gel Sci Technol 48:18; Special issue for the XIVth international sol–gel conference in MontpellierGoogle Scholar
  32. 32.
    Gvishi R, Pokrass M, Strum G (2008) Strong optical bonding with fast sol–gel material. In: Cutolo A, Armenise MN, Ramponi R (eds) First Mediterranean photonics conferenc, 25–28 June 2008, Ischia, Napoly, Italy, p 45Google Scholar
  33. 33.
    Gutina A, Haruvy Y, Gilath I, Axelrod E, Kozlovich N, Feldman Y (1999) J Phys Chem B 103:5454CrossRefGoogle Scholar
  34. 34.
    Streppel U, Dannberg P, Wachter C, Brauer A, Fronhlich L, Houbertz R, Popall M (2002) Opt Mater 21:475CrossRefGoogle Scholar
  35. 35.
    Houbertz R, Domann G, Cronauer C, Schmitt A, Martin H, Park JU, Fronhlich L, Buestrich R, Popall M, Streppel U, Dannberg P, Wachter C, Brauer A (2003) Thin Solid Film 442:194CrossRefADSGoogle Scholar
  36. 36.
    Hass U, Haas A, Stazinger V, Pichler H, Leising G, Jakopic G, Stadlober B, Houbertz R, Domann G, Schmitt A (2006) Phys Rev B 73:235339CrossRefADSGoogle Scholar
  37. 37.
    Du XM, Touam T, Degachi L, Guilbault JL, Andrews MP, Najafi SI (1998) Opt Eng 37:1101CrossRefADSGoogle Scholar
  38. 38.
    Gupta P, Markowicz PP, Baba K, O’reilly J, Samoc M, Prasad PN (2006) Appl Phys Lett 88:23109CrossRefADSGoogle Scholar
  39. 39.
    Gvishi R, Strum G (2008) UV-curing of fast sol–gel materials, manuscript is in preparationGoogle Scholar
  40. 40.
    Let AL, Mainwaring DE, Rix CJ, Murugaraj P (2007) J Phys Chem Solids 68:1428CrossRefADSGoogle Scholar
  41. 41.
    Yan S, Yin J, Yang J, Chen X (2007) Mater Lett 61:2683CrossRefGoogle Scholar
  42. 42.
    Armelao L, Eisenmenger-Sittner C, Groenewolt M, Gross S, Sada C, Schubert U, Tondello E, Zattin A (2005) J Mater Chem 15:1838CrossRefGoogle Scholar
  43. 43.
    Montemayor SM, Garcia Cerda LA, Torres L Jr, Rodriguez Fernandez OS (2007) J Sol–Gel Sci Technol 42:181CrossRefGoogle Scholar
  44. 44.
    Croutxe BC, Soppera O, Carre C (2007) J Sol–Gel Sci Technol 41:93Google Scholar
  45. 45.
    Mendez VJ (2006) J Sol–Gel Sci Technol 38:159CrossRefGoogle Scholar
  46. 46.
    Zhou H, Yi D, Yu Z, Xiao L, Li J (2007) Thin Solid Films 515:6909CrossRefADSGoogle Scholar
  47. 47.
    Li B, Hakuta Y, Hayashi H (2007) Mater Lett 61:3791CrossRefGoogle Scholar
  48. 48.
    Perez PH, Ochoa TA, Viveros T, Montoya A (2006) J Sol–Gel Sci Technol 37:49CrossRefGoogle Scholar
  49. 49.
    Wang ZJ, Usuki H, Kumagai T, Kokawa H (2007) J Sol–Gel Sci Technol 42:375CrossRefGoogle Scholar
  50. 50.
    Wu L, You B, Xing W (2007) J Sol–Gel Sci Technol 42:187CrossRefGoogle Scholar
  51. 51.
    Keum HN, Tae HL, Byeong SB, Popall M (2006) J Sol–Gel Sci Technol 39:255CrossRefGoogle Scholar
  52. 52.
    Oubaha M, Dubois M, Murphy B, Etienne P (2006) J Sol–Gel Sci Technol 38:111CrossRefGoogle Scholar
  53. 53.
    Ou DL, Seddon AB (1997) J Non-Cryst Solids 210:187CrossRefADSGoogle Scholar
  54. 54.
    Que W, Zhou Y, Lam YL, Chan YC, Tan HT, Tan TH, Kam CH (2000) J Electron Mater 29:1052CrossRefADSGoogle Scholar
  55. 55.
    Que W, Zhou Y, Lam YL, Chan YC, Kam CH (2000) Thin Solids Films 358:16CrossRefADSGoogle Scholar
  56. 56.
    Innocenzi P, Martucci A, Guglielmi M, Armelao L, Pelli S, Righini GC, Battaglin GC (1999) J Non-Cryst Solids 259:182CrossRefADSGoogle Scholar
  57. 57.
    Chang CC, Chen WC (2001) J Polym Sci A 39:3419CrossRefGoogle Scholar
  58. 58.
    Lee LH, Chen WC (2001) Chem Mater 13:1137CrossRefGoogle Scholar
  59. 59.
    Ojha M, Gill WN, Plawsky , Cho W (2006) J Vac Sci Technol B 24:1109CrossRefGoogle Scholar
  60. 60.
    Bae BS (2004) J Sol–Gel Sci Technol 31:309CrossRefGoogle Scholar
  61. 61.
    Gvishi R, Pokrass M, Strum G (2008) Fast sol–gel for optical bonding. In: Special Issue of Journal of the European Optical Society, manuscript was submitted for publication, September 2008Google Scholar
  62. 62.
    Ikeda T, Matsushita A, Tatsuno M, Minami Y, Yamaguchi M, Yamamoto K, Tani M, Hangyo M (2005) Appl Phys Lett 87:034105CrossRefADSGoogle Scholar
  63. 63.
    Takahashi H, Hosoda M (2000) Appl Phys Lett 77:1085CrossRefADSGoogle Scholar
  64. 64.
    Yu BL, Yang Y, Zeng F, Xin X, Alfano RR (2005) Appl Phys Lett 86:061912CrossRefADSGoogle Scholar
  65. 65.
    Braly LB, Cruzan JD, Liu K, Fellers RS, Saykally RJ (2000) J Chem Phys 112:10293CrossRefADSGoogle Scholar
  66. 66.
    Asaki MLT, Redondo A, Zawodzinski TA, Taylor AJ (2002) J Chem Phys 116:8469CrossRefADSGoogle Scholar
  67. 67.
    Venables DS, Chiu A, Schmuttenmaer CA (2000) J Chem Phys 113:3243CrossRefADSGoogle Scholar
  68. 68.
    Kojima S, Kitahara H, Nishizawa S, Yang YS, Wada Takeda M (2005) J Mol Struct 744:243CrossRefADSGoogle Scholar
  69. 69.
    Feofilov SP, Kaplyanskii AA, Zakhachenya RI (1996) J Lumin 66:349CrossRefGoogle Scholar
  70. 70.
    Sengupta A, Bandyopadhyay A, Barat RB, Gary DE (2005) Proc SPIE 6120:61200ACrossRefGoogle Scholar
  71. 71.
    Chamberlain JM (2004) Proc SPIE 5619:0277Google Scholar
  72. 72.
    Chan TLJ, Bjarnason JE, Lee AWM, Celis MA, Brown ER (2004) Appl Phys Lett 85:2523CrossRefADSGoogle Scholar
  73. 73.
    Gorenflo S, Tauer U, Hinkov I, Lambrecht A, Helm H (2005) Proc SPIE 6120:61200LCrossRefGoogle Scholar
  74. 74.
    Brown ER (2003) Int J High Speed Electron Syst 13:995CrossRefGoogle Scholar
  75. 75.
    Anastasi RF, Madaras EI (2006) Proc SPIE 6176:61760OCrossRefGoogle Scholar
  76. 76.
    Liu H, Jingzhou X, Lee MY, Janumpally R, Dordick J, Zhang XC (2003) Conference on lasers and electro optics CLEO IEEE CH37419-TBR:2Google Scholar
  77. 77.
    Zhang J, Grischkowsky D (2004) J Phys Chem B 108:18590CrossRefGoogle Scholar
  78. 78.
    Mickan SP, Shavartsman R, Munch J, Zhang XC, Abbott D (2004) J Opt B 6:S786ADSGoogle Scholar
  79. 79.
    Pokrass M, Gvishi R (2008) Characterization of fast sol–gel by FTIR and NIR spectroscopies, manuscript is in preparationGoogle Scholar
  80. 80.
    Cothup NB, Daly LH, Wiberley SE (1964) Introduction to infrared and raman spectroscopy. Academic Press, New-York and LondonGoogle Scholar
  81. 81.
    Fidalgo A, Ilharco LM (2000) J Non-Cryst Solids 283:144CrossRefADSGoogle Scholar
  82. 82.
    Jabbour J, Calas S, Gatti S, Kribich RK, Myara M, Pille G, Etienne P, Moreau Y (2007) J Non-Cryst Solids 354:651CrossRefADSGoogle Scholar
  83. 83.
    Matsunaga T, Shibayama M (2007) Phys Rev 76:1Google Scholar
  84. 84.
    Araki J, Ito K (2007) Polymer 48:7139CrossRefGoogle Scholar
  85. 85.
    Xing W, You B, Wu L (2007) J Sol–Gel Sci Technol 42:187CrossRefGoogle Scholar
  86. 86.
    Orignac X, Barbier D, Du XM, Almeida RM (1996) Appl Phys Lett 69:895CrossRefADSGoogle Scholar
  87. 87.
    Orignac X, Barbier D, Du XM, Almeida RM, McCarthy O, Yeatman E (1999) Opt Mater 12:1CrossRefGoogle Scholar
  88. 88.
    Urlacher C, de Lucas CM, Bernstein E, Jacquier B, Mugnier J (1999) Opt Mater 12:19CrossRefGoogle Scholar
  89. 89.
    Zhu X, Lo D (2002) Appl Phys Lett 80:917CrossRefADSGoogle Scholar
  90. 90.
    Huang W, Syms RRA (2003) J Lightwave Technol 21:1339CrossRefADSGoogle Scholar
  91. 91.
    Microresist Technology (2008) Products. http:/www.Microresist.de/products/ormocers/overview_ormocers_en.htm
  92. 92.
    Ostendorf A, Chichkov BN (2006) Two-photon polymerization: a new approach to micromachining. In: Photonics spectra, October 2006, p 72Google Scholar
  93. 93.
    Twyman F (1952) Prism and lens making, 2nd edn. Hilger & Watts, LondonGoogle Scholar
  94. 94.
    Wimperis JR, Johnston SF (1984) Appl Opt 23:1145CrossRefADSGoogle Scholar
  95. 95.
    Park C, Lee S, Lee JH, Lim J, Lee SG, Park M, Lee SS, Kim J, Park CR, Kim C (2007) Polymer 45:2072Google Scholar
  96. 96.
    Zhao H, Fu Z, Wu YX, Zhao YZ (2007) Mater Manuf Process 22:851CrossRefGoogle Scholar
  97. 97.
    Haisma J, Spierings GA (2002) Mater Sci Eng R Mater Sci R 37:1CrossRefGoogle Scholar
  98. 98.
    Akelsen OM (1992) J Mater Sci 27:569CrossRefADSGoogle Scholar
  99. 99.
    Plossi A, Krauter G (1999) Mater Sci Eng R 25:1CrossRefGoogle Scholar
  100. 100.
    Greco V, Marchesini F, Molesini G (2001) J Opt A Pure Appl Opt 3:85CrossRefADSGoogle Scholar
  101. 101.
    Rubinstein B, Jackel SM, Feldman R, Shimony Y (2004) Proc SPIE 5460:141. doi:10.1117/12.549030 CrossRefADSGoogle Scholar
  102. 102.
    Sivasankar S, Chu S (2007) Nano Lett 7:3031PubMedCrossRefADSGoogle Scholar
  103. 103.
    Keranen M, Gnyba M, Raerinne P, Kololuoma T, Maaninen A, Rantala JT (2004) J Sol–Gel Sci Technol 31:369CrossRefGoogle Scholar
  104. 104.
    Boeing and Wright-Patterson Air Force base USA patent 5,807,430 (1998) Sol–Gel adhesive bonding of metals—AC-130, September 1998Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Electro-Optics DivisionSoreq NRCYavneIsrael

Personalised recommendations