Journal of Sol-Gel Science and Technology

, Volume 49, Issue 1, pp 53–59 | Cite as

Effect of post-treatment (gel aging) on the properties of methyltrimethoxysilane based silica aerogels prepared by two-step sol–gel process

  • Digambar Y. Nadargi
  • Sanjay S. Latthe
  • A. Venkateswara Rao
Original Paper

Abstract

The properties of silica aerogels are highly dependent on the post-treatment steps like gel washing, gel aging and gel drying. The experimental results of the studies on one of the post-treatment steps i.e. gel aging effect on the physical and microstructural properties of methyltrimethoxysilane (MTMS) based silica aerogels, are reported. These hybrid aerogels were prepared by two step sol–gel process followed by supercritical drying. The molar ratio of MeOH/MTMS (M) was varied from 7 to 35 by keeping the H2O/MTMS (W) molar ratio constant at 4. The as prepared alcogels of different molar ratios were aged from 0 to 5 days. It was observed that 2 days of gel aging period is the optimum gel aging period for good quality aerogels in terms of low density, less volume shrinkage and high porosity. The well tailored network matrix with low density (0.04 g/cm3), less volume shrinkage (4.5%), low thermal conductivity (0.05 W/mK) and high porosity (98.84 %) was obtained for 2 days of gel aging period of M = 35. Further, the gelation time varied from 8 to 1 h depending on the M values. The gelation time was being more for lesser M values. The aerogels were characterized by bulk density, porosity, volume shrinkage, thermal conductivity, Scanning Electron Microscopy and the Fourier Transform Infrared spectroscopy.

Keywords

Silica aerogels Aging process Sol–gel reactions Thermal conductivity Scanning Electron Microscopy 

References

  1. 1.
    Soleimani Dorcheh A, Abbasi MH (2008) J Mater Process Technol 199:10CrossRefGoogle Scholar
  2. 2.
    Buzykaev AR, Danilyuk AF, Ganzhur SF, Kravchenko EA, Onuchin AP (1999) Nucl Instrum Methods Phys Res Sec A 433:396CrossRefADSGoogle Scholar
  3. 3.
    Ishino M, Chiba J, En’yo H, Funahashi H, Ichikawa A, Ieiri M, Kanda H et al (2001) Nucl Instrum Methods Phys Res Sec A 457:581CrossRefADSGoogle Scholar
  4. 4.
    Sarawade PB, Kim J-K, Kim H-K, Kim H-T (2007) Appl Surf Sci 254:574CrossRefADSGoogle Scholar
  5. 5.
    Reim M, Reichenauer G, Körner W, Manara J, Arduini-Schuster M, Korder S, Beck A, Fricke J (2004) J Non-Cryst Solids 350:358CrossRefADSGoogle Scholar
  6. 6.
    Pestotnik R, Krizan P, Korpar S, Bracko M, Staric M, Stanovnik A (2001) Ncl Sci Symposium Conf Record 2001 IEEE 1: 372Google Scholar
  7. 7.
    Cuautle E, Di Bari D, Gorlychev VG, Karavicheva TL, Kurepin AB, Martinez MI et al (2005) Nucl Instrum Methods Phys Res Sec A 553:25CrossRefADSGoogle Scholar
  8. 8.
    Alfaro R, Martínez MI, Paic G (2007) Nucl Instrum Methods Phys Res Sec A 572:437CrossRefADSGoogle Scholar
  9. 9.
    Cisbani E, Colilli S, Crateri R, Cusanno F, Fratoni R, Frullani S et al (2003) Nucl Instrum Methods Phys Res Sec A 496:305CrossRefADSGoogle Scholar
  10. 10.
    Reim M, Körner W, Manara J, Korder S, Arduini-Schuster M, Ebert H-P, Fricke J (2005) Sol Energy 791:31Google Scholar
  11. 11.
    Reim M, Beck A et al (2002) Sol Energy 72:21CrossRefGoogle Scholar
  12. 12.
    Ackerman WC, Vlachos M, Rouanet S, Fruendt J (2001) J Non-Cryst Solids 285:264CrossRefADSGoogle Scholar
  13. 13.
    Smith DM, Maskara A, Boes U (1998) J Non-Cryst Solids 225:254CrossRefADSGoogle Scholar
  14. 14.
    Moussa N, Fraile JM, Ghorbel A, Mayoral JA (2006) J Mol Catal A: Chem 255:62CrossRefGoogle Scholar
  15. 15.
    Pajonk GM, Teichner SJ, Fricke J Proceedings of the 1st Int Symp on Aerogels, Wurzburg, Germany, 23–25, September 1985, p 193Google Scholar
  16. 16.
    Aegerter MA, Jafelicci M Jr, Souza DF, Zanotto ED (1989) Sol–gel science and technology. In: Proceedings of the winter school on glasses and ceramics from gels, Brazil, 14–19 August, p 153Google Scholar
  17. 17.
    Iler RK (1979) The chemistry of silica. Wiley, New YorkGoogle Scholar
  18. 18.
    Brinker CJ, Scherer GW (1989) Sol–gel science. Academic press, New YorkGoogle Scholar
  19. 19.
    Hiemenz PC (1977) Principles of colloid and surface chemistry. Marcel Dekker, New YorkGoogle Scholar
  20. 20.
    Venkateswara Rao A, Kulkarni MM, Amalnerkar DP, Seth T (2003) J Non-Cryst Solids 330:187CrossRefADSGoogle Scholar
  21. 21.
    Iler RK (1979) Methods and compositions for preparing silica aerogels. In: The chemistry of silica, Wiley, New York, pp 222Google Scholar
  22. 22.
    Brinker CJ, Scherer GW (1985) J Non-Cryst Solids 70:301CrossRefADSGoogle Scholar
  23. 23.
    Hering N, Shriber K, Riedel R, Lichtenberger O, Woltersodorf J (2001) Appl Organometal Chem 15:879CrossRefGoogle Scholar
  24. 24.
    Yoldas BE (1984) J Non-Cryst Solids 63:145CrossRefADSGoogle Scholar
  25. 25.
    Shwertfeger F, Glaubitt W, Schubert U (1992) J Non-Cryst Solids 145:85CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Digambar Y. Nadargi
    • 1
  • Sanjay S. Latthe
    • 1
  • A. Venkateswara Rao
    • 1
  1. 1.Air Glass Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia

Personalised recommendations