Modeling of thermal conduction in granular silica aerogels

Original Paper


Monolithic silica aerogels of large sizes are difficult to synthesize and manipulate. Granular form is the easiest way of conditioning them. One of the most promising applications is probably thermal superinsulation applied to the building sector. To understand and quantify thermal conduction in granular silica aerogels, numerical simulations are necessary. Our method is based on two steps: determining properties of monoliths at the nanopore scale and applying them to macroscopic grain packings. The two-dimensional heat diffusion equation is applied to periodic fractal patterns representing an ideal nanoporous medium made of two phases (silica and air) in order to infer macroscopic effective properties of monolithic silica aerogels. The same equation is then applied to granular aerogels. Grains are represented by regular cubic or hexagonal packings of spheres. The thermal contact resistance between grains is taken into account in an original analytical way.


Silica aerogels Grain packings Heat conduction Superinsulants Thermal contact resistance 


  1. 1.
    Fricke J, Emmerling A (1998) J Sol-Gel Sci Tech 13:299CrossRefGoogle Scholar
  2. 2.
    Hrubesh LW (1998) J Non-Cryst Sol 225:335CrossRefGoogle Scholar
  3. 3.
    Duer K, Svendsen S (1998) Solar Energy 63:259CrossRefGoogle Scholar
  4. 4.
    Reim M, Beck A, Körner W et al (2002) Solar Energy 72:21CrossRefGoogle Scholar
  5. 5.
    Büttner D, Caps R, Heinemann U et al (1986) In: 1st International Symposium on AerogelsGoogle Scholar
  6. 6.
    Hrubesh LW, Pekala W (1994) J Mat Res 9:731CrossRefGoogle Scholar
  7. 7.
    Zeng SQ, Hunt A, Greif R (1995) J Non-Cryst Sol 186:264CrossRefGoogle Scholar
  8. 8.
    Rigacci A, Achard P, Ehrgurger-Dolle F, Pirard R (1998) J Non-Cryst Sol 225:250CrossRefGoogle Scholar
  9. 9.
    Kaviany M (1995) Principles of heat transfer in porous media. Springer-VerlagGoogle Scholar
  10. 10.
    Bisson A, Rigacci A, Lecomte D, Achard P (2004) J Non-Cryst Sol 350:379CrossRefGoogle Scholar
  11. 11.
    Yagi S, Kunii D (1957) AIChE J 3:373CrossRefGoogle Scholar
  12. 12.
    Kunii D, Smith JM (1960) AIChE J 6:71CrossRefGoogle Scholar
  13. 13.
    Hayashi S (1987) J Chem Eng 35:51CrossRefGoogle Scholar
  14. 14.
    Spagnol S, Lartigue B, Trombe A, Gibiat V (2007) EPL 78:46005CrossRefGoogle Scholar
  15. 15.
    Fricke J, Hümmer E, Morper HJ, Sheuerpflug P (1989) In: 2nd International Symposium on AerogelsGoogle Scholar
  16. 16.
    Batchelor GK, O’Brien RW (1977) Proc Roy Soc Lond A 355:313CrossRefGoogle Scholar
  17. 17.
    Bardon JP (1988) In: Heat Transfer in composites materials and at the interfacesGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • S. Spagnol
    • 1
    • 2
  • B. Lartigue
    • 1
  • A. Trombe
    • 1
    • 2
  • V. Gibiat
    • 1
  1. 1.Laboratoire PHASE, Université Paul SabatierToulouse Cedex 9France
  2. 2.Institut National des Sciences Appliquées de ToulouseToulouse Cedex 4France

Personalised recommendations