Journal of Sol-Gel Science and Technology

, Volume 48, Issue 1–2, pp 86–94 | Cite as

Design of highly porous melamine-based networks through a bicontinuous microemulsion templating strategy

  • C. C. Egger
  • C. du Fresne
  • D. Schmidt
  • J. Yang
  • V. Schädler
Original Paper

Abstract

Designing low density polymeric porous materials with defined pore sizes (diameters in the 100 nm range) still remains a real synthesis challenge. Here, for the first time, we present a strategy by which bicontinuous microemulsions are used as templating agents for the in-situ aqueous polycondensation of organic resins (melamine formaldehyde, MF). The behaviour of surfactants with different head-groups in systems including oil and MF-containing aqueous phase is studied. While many surfactants are not compatible with aqueous MF precondensates, here we report a non-ionic surfactant either used solely or along with anionic surfactants which prove to be successful at keeping bicontinuous microemulsion systems homogeneous even during early stages of polymerisation. However, upon acid-catalysis it becomes clear that the pore structure of the organic material is largely controlled by the kinetics of phase separation due to the sol–gel process rather than by the thermodynamic equilibrium of the template (microemulsion). Indeed, despite numerous attempts, stabilising the microemulsion interface with zero curvature (bicontinuous) has remained problematic. Instead, we show a new behaviour for the MF resin whereby non-spherical MF morphologies (i.e. thread-like structures) can be obtained by specific interactions between the aqueous amino resin and the acid counterions.

Keywords

Melamine Sol–gel Microemulsion Template Bicontinuous 

References

  1. 1.
    Payra P, Dutta PK (2003) In: Auerbach SM, Carrado KA, Dutta PK (eds) Handbook of zeolite science and technology. Marcel-Dekker, NYGoogle Scholar
  2. 2.
    Cheetham AK, Ferey G, Loiseau T (1999) Angew Chem Int Ed 38(22):3268–3292CrossRefGoogle Scholar
  3. 3.
    Singh R, Dutta PK (2003) In: Auerbach SM, Carrado KA, Dutta PK (eds) Handbook of zeolite science and technology. Marcel-Dekker, NYGoogle Scholar
  4. 4.
    Yanagisawa T, Shimizu T, Kuroda K, Kato C (1990) Bull Chem Soc Japan 63(4):988–992CrossRefGoogle Scholar
  5. 5.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710–712CrossRefGoogle Scholar
  6. 6.
    Hüsing N, Schubert U (1998) Angew Chem Int Ed 37:22CrossRefGoogle Scholar
  7. 7.
    Park CB, Baldwin DF, Suh NP (1995) Polym Eng Sci 35(5):432–440CrossRefGoogle Scholar
  8. 8.
    Handa YP, Zhang Z, Wong B (2001) Cell Polym 20(1):1–16Google Scholar
  9. 9.
    Chen SH, Chang SL, Strey R, Samseth J, Mortensen K (1991) J Phys Chem 95(19):7427–7432CrossRefGoogle Scholar
  10. 10.
    Sjiiblom J, Lindbergh R, Friberg SE (1996) Adv Colloid Interface Sci 95:125–287CrossRefGoogle Scholar
  11. 11.
    Gan LM, Li TD, Chew CH, Teo WK (1995) Langmuir 11:3316–3320CrossRefGoogle Scholar
  12. 12.
    Gan LM, Chieng TH, Chew CH, Ng SC (1994) Langmuir 10:4022–4026CrossRefGoogle Scholar
  13. 13.
    Moulik SP, Paul BK (1998) Adv Colloid Interface Sci 78:99–195CrossRefGoogle Scholar
  14. 14.
    Candau F, Pabon M, Anquetil J-Y (1999) Colloids Surf A 153:47–59CrossRefGoogle Scholar
  15. 15.
    Sottmann T, Lade M, Stolz M, Schömacker R (2002) Tenside Surf Det 1:20–27Google Scholar
  16. 16.
    Egger CC, Schädler V, Hirschinger J, Raya J, Bechinger B (2007) Macromol Chem Phys 208(21):2204–2214CrossRefGoogle Scholar
  17. 17.
    Antonietti M, Henzte H-P (1996) Colloid Polym Sci 274:696–702CrossRefGoogle Scholar
  18. 18.
    Hentze H-P, Kaler E (2003) Curr Opin Colloid Interface Sci 8:164–178CrossRefGoogle Scholar
  19. 19.
    Liu J, Gan LM, Chew CH, Teo WK, Gan LH (1997) Langmuir 13:6421–6426CrossRefGoogle Scholar
  20. 20.
    Blank WJ (1979) J Coating Technol 51:61–70Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • C. C. Egger
    • 1
  • C. du Fresne
    • 2
  • D. Schmidt
    • 3
  • J. Yang
    • 4
  • V. Schädler
    • 5
  1. 1.Lennard Jones LaboratoriesKeele UniversityKeeleUK
  2. 2.BASF Nederland B.V. Innovatielaan 1NijehaskeThe Netherlands
  3. 3.Department of Plastics EngineeringUniversity of Massachusetts LowellLowellUSA
  4. 4.BASF ChinaShanghaiChina
  5. 5.BASF CorporationWyandotteUSA

Personalised recommendations