Advertisement

Journal of Sol-Gel Science and Technology

, Volume 48, Issue 1–2, pp 51–60 | Cite as

Preparation of polypropylene/silica composites by in-situ sol–gel processing using hyperbranched polyethoxysiloxane

  • Qizheng Dou
  • Xiaomin Zhu
  • Karin Peter
  • Dan E. Demco
  • Martin MöllerEmail author
  • Claudiu Melian
Original Paper

Abstract

Based on a volatile-free silica liquid precursor polymer—hyperbranched polyethoxysiloxane (PEOS), an industrial compatible in situ sol–gel process for the preparation of polymer/silica nanocomposites has been developed. It has been shown that in the presence of a catalyst water vapor induced a fast conversion of liquid PEOS to solid silica in polypropylene (PP) melt in a twin-screw microcompounder. Solid state NMR showed that the in situ conversion of PEOS proceeded to a large extent. With small amounts of PEOS this procedure yielded PP/silica composites with particle size less than 100 nm. The particle size increased with the PEOS amount blended with PP. Nevertheless, the particles were observed to be homogeneously dispersed within the polymer matrix. PP/silica composites prepared by in situ sol–gel technology showed improved thermal properties, but almost not affected mechanical properties in comparison with pure PP.

Keywords

Hyperbranched polyethoxysiloxane In situ sol–gel processing Nanocomposite 

Notes

Acknowledgments

The authors thank the German Federal Ministry of Education and Research (BMBF, project “NanoBase”. FKZ 03X0023G) for the financial support. D.E. Demco and C. Melian thank Professor B. Blümich for fruitful discussion.

References

  1. 1.
    Beecroft LL, Ober CK (1997) Chem Mater 9:1302–1317CrossRefGoogle Scholar
  2. 2.
    Innocenzi P, Brusatin G (2001) Chem Mater 13:3126–3139CrossRefGoogle Scholar
  3. 3.
    Interrante LV (1995) Chem Mater 7:1751–1752Google Scholar
  4. 4.
    Komarneni S (1992) J Mater Chem 2:1219–1230CrossRefGoogle Scholar
  5. 5.
    Gleiter H (1992) Adv Mater 4:474–481CrossRefGoogle Scholar
  6. 6.
    Novak BM (1993) Adv Mater 5:422–433CrossRefGoogle Scholar
  7. 7.
    Breuer O, Sundararaj U (2004) Polym Compos 25:630–645CrossRefGoogle Scholar
  8. 8.
    Manevitch OL, Rutledge GC (2004) J Phys Chem B 108:1428–1435CrossRefGoogle Scholar
  9. 9.
    Sturcova A, Davies GR, Eichhorn SJ (2005) Biomacromolecules 6:1055–1061CrossRefGoogle Scholar
  10. 10.
    Treacy MMJ, Ebbesen TW, Gibson JM (1996) Nature 381:678–680CrossRefGoogle Scholar
  11. 11.
    Van Lier G, Van Alsenoy C, Van Doren V, Geerlings P (2000) Chem Phys Lett 326:181–185CrossRefGoogle Scholar
  12. 12.
    Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Science 287:637–640CrossRefGoogle Scholar
  13. 13.
    Mack JJ, Viculis LM, Ali A, Luoh R, Yang GL, Hahn HT, Ko FK, Kaner RB (2005) Adv Mater 17:77–80CrossRefGoogle Scholar
  14. 14.
    Samir M, Alloin F, Dufresne A (2005) Biomacromolecules 6:612–626CrossRefGoogle Scholar
  15. 15.
    Ray SS, Okamoto M (2003) Prog Polym Sci 28:1539–1641CrossRefGoogle Scholar
  16. 16.
    Gilman JW, Jackson CL, Morgan AB, Harris R, Manias E, Giannelis EP, Wuthenow M, Hilton D, Phillips SH (2000) Chem Mater 12:1866–1873CrossRefGoogle Scholar
  17. 17.
    Ou CF, Hsu MC (2007) J Polym Res 14:373–378CrossRefGoogle Scholar
  18. 18.
    Hong RY, Fu HP, Zhang YJ, Liu L, Wang J, Li HZ, Zheng Y (2007) J Appl Polym Sci 105:2176–2184CrossRefGoogle Scholar
  19. 19.
    Pluta M, Paul MA, Alexandre M, Dubois P (2006) J Polym Sci Part B Polym Phys 44:299–311CrossRefGoogle Scholar
  20. 20.
    Yudin VE, Divoux GM, Otaigbe JU, Svetlichnyi VM (2005) Polymer 46:10866–10872CrossRefGoogle Scholar
  21. 21.
    Zhang H, Zhang Z, Friedrich K, Eger C (2006) Acta Mater 54:1833–1842CrossRefGoogle Scholar
  22. 22.
    Muh E, Frey H, Klee JE, Mulhaupt R (2001) Adv Funct Mater 11:425–429CrossRefGoogle Scholar
  23. 23.
    Jain S, Goossens H, Picchioni F, Magusin P, Mezari B, van Duin M (2005) Polymer 46:6666–6681CrossRefGoogle Scholar
  24. 24.
    Ruan WH, Zhang MQ, Rong MZ, Friedrich K (2004) J Mater Sci 39:3475–3478CrossRefGoogle Scholar
  25. 25.
    Garcia M, van Vliet G, ten Cate MGJ, Chavez F, Norder B, Kooi B, van Zyl WE, Verweij H, Blank DHA (2004) Polym Adv Technol 15:164–172CrossRefGoogle Scholar
  26. 26.
    Kim YK, Lewis AF, Patra PK, Warner SB, Mhetre SK, Shah MA, Nam D (2002) Nanocomposite fibers. In: Christopher CB et al (ed) Materials Research Society Symposium Proceedings. pp 441Google Scholar
  27. 27.
    Rankin SE, Macosko CW, McCormick AV (1998) Aiche J 44:1141–1156CrossRefGoogle Scholar
  28. 28.
    Sugahara Y, Inoue T, Kuroda K (1997) J Mater Chem 7:53–59CrossRefGoogle Scholar
  29. 29.
    Alam TM, Assink RA, Loy DA (1996) Chem Mater 8:2366–2374CrossRefGoogle Scholar
  30. 30.
    Aelion R, Loebel A, Eirich F (1950) Recl Trav Chim Pays-Bas J Roy Neth Chem Soc 69:61–75Google Scholar
  31. 31.
    Dubitsky Y, Zaopo A, Zannoni G, Zetta L (2000) Mater Chem Phys 64:45–53CrossRefGoogle Scholar
  32. 32.
    Rankin SE, McCormick AV (1999) Magn Reson Chem 37:S27–S37CrossRefGoogle Scholar
  33. 33.
    Altmann S, Pfeiffer J (2003) Monatsh Chem 134:1081–1092Google Scholar
  34. 34.
    Mizutani Y, Nago S (1999) J Appl Polym Sci 72:1489–1494CrossRefGoogle Scholar
  35. 35.
    Phe BH, Bounor-Legare V, David L, Michel A (2004) J Sol–Gel Sci Technol 31:47–50CrossRefGoogle Scholar
  36. 36.
    Zhu XM, Jaumann M, Peter K, Moller M, Melian C, Adams-Buda A, Demco DE, Blumich B (2006) Macromolecules 39:1701–1708CrossRefGoogle Scholar
  37. 37.
    Li JX, Ness JN, Cheung WL (1996) J Appl Polym Sci 59:1733–1740CrossRefGoogle Scholar
  38. 38.
    Hedesiu C, Demco DE, Kleppinger R, Vanden Poel G, Gijsbers W, Blumich B, Remerie K, Litvinov VM (2007) Macromolecules 40:3977–3989CrossRefGoogle Scholar
  39. 39.
    Hedesiu C, Demco DE, Remerie K, Blümich B, Litvinov VM (2008) Macromol Chem Phys  doi:10.1002/macp.200700503
  40. 40.
    Kristiansen M, Werner M, Tervoort T, Smith P, Blomenhofer M, Schmidt HW (2003) Macromolecules 36:5150–5156CrossRefGoogle Scholar
  41. 41.
    Jain S, Goossens H, van Duin M, Lemstra P (2005) Polymer 46:8805–8818Google Scholar
  42. 42.
    Wunderlich B (1990) Thermal analysis. Academic Press, New York. p 418Google Scholar
  43. 43.
    Schrauwen BAG, Janssen RPM, Govaert LE, Meijer HEH (2004) Macromolecules 37:6069–6078CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Qizheng Dou
    • 1
  • Xiaomin Zhu
    • 1
  • Karin Peter
    • 1
  • Dan E. Demco
    • 1
  • Martin Möller
    • 1
    Email author
  • Claudiu Melian
    • 2
  1. 1.DWI at RWTH Aachen e.V. and Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityAachenGermany
  2. 2.Institute of Technical and Macromolecular Chemistry at RWTH AachenAachenGermany

Personalised recommendations