Advertisement

Journal of Sol-Gel Science and Technology

, Volume 46, Issue 1, pp 47–56 | Cite as

The leaching of Rhodamine B, Naphthol Blue Black, Metanil Yellow and Bismarck Brown R from silica deposits on polyester and viscose textiles

  • T. NedelčevEmail author
  • I. Krupa
  • D. Lath
  • M. Špírková
Original Paper

Abstract

Rhodamine B (RB), Naphthol Blue Black (NBB), Metanil Yellow (MTY) and Bismarck Brown R (BHR) immobilized within a modified silica sol were used for the surface dyeing of textiles, namely polyester and viscose fabrics. Silica sols were characterized by FTIR and dynamic light-scattering measurements. The sol was dip-coated onto the fabrics and deposits were formed. Three similar procedures for the formation of silica deposits, using tetraethoxysilane (TEOS) and (3-glycidoxypropyl)trimethoxysilane (GPTMS) as precursors in acidified ethanol, were tested. Interactions between dyes and silica precursors were investigated by FTIR measurements. Leaching was detected and quantified by UV–Vis measurements on the composition of washing solutions. Incorporation of GPTMS into silica sols reduces dye leaching from the silica deposits.

Keywords

Sol–gel process Textile Polyester Viscose Surface dyeing Immobilization 

Notes

Acknowledgement

This work was supported by the Science and Technology Assistance Agency undercontract No. APVT-99-035004 and VEGA grant No. 2/6114/26. M. Špírková is grateful to the Grant Agency of the Academy of Sciences of the CR for financial support (project A400500505).

References

  1. 1.
    Brinker CJ, Scherer GW (1990) Sol–Gel science: the physics and chemistry of sol-gel processing. Academic Press, San Diego, p 116Google Scholar
  2. 2.
    Klein LC (1994) Sol–gel optics—processing and applications. Kluwer Academic, Publishers, BostonGoogle Scholar
  3. 3.
    MacCraith BD, McDonagh CM, O’Keeffe G, McEvoy AK, Butler T, Sheridan FR (1995) Sens Act B 29:51CrossRefGoogle Scholar
  4. 4.
    Avnir D, Kaufman VR, Reisfeld R (1985) J Non-Crystall Solids 71:395CrossRefGoogle Scholar
  5. 5.
    Böhmer MR, Keursten TAPM (2000) J Sol-Gel Sci Technol 19:1573CrossRefGoogle Scholar
  6. 6.
    Panitz J-C, Geiger F (1999) J Sol-Gel Sci Technol 13:473CrossRefGoogle Scholar
  7. 7.
    Mahltig B, Böttcher H (2003) J Sol–Gel Sci Technol 27:43CrossRefGoogle Scholar
  8. 8.
    Mahltig B, Knittel B, Schollmeyer E, Böttcher H (2004) J Sol-Gel Sci Technol 31:293CrossRefGoogle Scholar
  9. 9.
    Trepte J, Böttcher H (2000) J Sol-Gel Sci Technol 19:691CrossRefGoogle Scholar
  10. 10.
    Mahltig B, Textor T (2006) J Sol-Gel Sci Technol 39:111CrossRefGoogle Scholar
  11. 11.
    Koppel DE (1972) J Chem Phys 57:4814CrossRefGoogle Scholar
  12. 12.
    Schmidt H, Keiser A, Rudolph M, Lentz A (1986) In: Hench LL, Ulrich DR (eds) Science of ceramic chemical processing. Wiley, New York, p 87Google Scholar
  13. 13.
    InnovationsNetz Unterfranken, http://www.innob.de/downloads/vortrag_schottner.pdf. Accessed 26 November 2007
  14. 14.
    Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol-gel processing. Academic Press, Boston, p 145Google Scholar
  15. 15.
    Charaf A, Bouzoubaa M, Bouzoubaaz A, Blanc M, Leclerc G (1994) Eur J Med Chem 29:69CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • T. Nedelčev
    • 1
    Email author
  • I. Krupa
    • 1
  • D. Lath
    • 1
  • M. Špírková
    • 2
  1. 1.Polymer InstituteSlovak Academy of SciencesBratislavaSlovakia
  2. 2.Institute of Macromolecular ChemistryAcademy of Sciences of the Czech RepublicPraha 6Czech Republic

Personalised recommendations