Advertisement

Journal of Sol-Gel Science and Technology

, Volume 45, Issue 3, pp 291–297 | Cite as

Fast CO2 sequestration by aerogel composites

  • Alberto Santos
  • Mohamed Ajbary
  • Abdelhak Kherbeche
  • Manuel Piñero
  • N. De la Rosa-Fox
  • Luis Esquivias
Original Paper

Abstract

The increasingly evident impact of anthropogenic CO2 emissions on climate change and associated environmental effects is stimulating the search for viable methods to remove this gas. One of the most promising strategies is the long-term storage of CO2 in inert, insoluble and thermodynamically-stable materials. This strategy mimics the natural reactions that transform silicates into carbonates regulating the cycle of CO2 on the surface of the Earth, operating on a geological time-scale. Consequently, the aim is to accelerate these reactions to be applicable on the timescale of human lives. We present the various technologies developed or proposed to date, based on this particular approach. The principal limiting factor is that high pressures and temperatures are required to produce appropriate materials capable of CO2 sequestration and storage. Nevertheless, the synthetic materials known as aerogels can be modified in shape, size and chemical functionality so as to catalyse the process of CO2 elimination through silicates (of Ca or Mg), considerably reducing the reaction time and working at atmospheric pressure and temperature.

Keywords

Aerogel Wollastonite Composite CO2 sequestration Carbonation reaction 

Notes

Acknowledgments

The authors are grateful to the Spanish Ministerio de Educación y Ciencia, the Consejería de Innovación Ciencia y Empresa of the Junta de Andalucía (Spain) and Agencia Española de Cooperación Internacional for supporting this work with the Projects MAT2005-01583, TEP790 and AECI A/5575/06, respectively.

References

  1. 1.
    Wu JC-S, Sheen J-D, Chen S-Y, Fan Y-Ch (2001) Feasibility of CO2 fixation via artificial rock weathering. Ind Eng Chem Res 40:3902CrossRefGoogle Scholar
  2. 2.
    Tai CY, Chen W-R, Shih S-M (2006) AIChE J 52:292CrossRefGoogle Scholar
  3. 3.
    Zevenhoven R, Eloneva S, Teir S (2006) Catal Today 115:73CrossRefGoogle Scholar
  4. 4.
    Rodríguez-Ortega J, Esquivias L (1997) J Sol-Gel Sci Technol 8:8 117Google Scholar
  5. 5.
    Esquivias L, de la Rosa-Fox N (2003) J Sol-Gel Sci Technol 26:651CrossRefGoogle Scholar
  6. 6.
    Santos A, Toledo-Fernández JA, Mendoza-Serna R, Gago-Duport L, de la Rosa-Fox N, Piñero M, Esquivias L (2007) Ind Eng Chem Res 46:103CrossRefGoogle Scholar
  7. 7.
    Fernández-Caliani JC, Moreno-Ventas I, Miras A, Requena A (2002) Bol Soc Esp Miner 25A:31Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Alberto Santos
    • 1
  • Mohamed Ajbary
    • 2
  • Abdelhak Kherbeche
    • 3
  • Manuel Piñero
    • 4
  • N. De la Rosa-Fox
    • 2
  • Luis Esquivias
    • 5
  1. 1.Departamento de Física de la TierraCASEM, Universidad de CádizCadizSpain
  2. 2.Departamento de Física de la Materia Condensada, Facultad de CienciasUniversidad de CádizCadizSpain
  3. 3.Université Sidi Mohamed Ben Abdellah, École Supérieure de TechnologieFesMaroc
  4. 4.Departamento de Física AplicadaCASEM, Universidad de CádizCadizSpain
  5. 5.Departamento de Física de la Materia Condensada, Facultad de FísicaInstituto de Ciencia de los Materiales de Sevilla-CSIC, Universidad de SevillaSevillaSpain

Personalised recommendations