Journal of Sol-Gel Science and Technology

, Volume 45, Issue 1, pp 115–119 | Cite as

Sol–gel derived mesoporous bioactive glass fibers as tissue-engineering scaffolds

  • Jing Yi
  • Guangfeng Wei
  • Xiaohui Huang
  • Lingzhi Zhao
  • Quan Zhang
  • Chengzhong Yu
Original Paper

Abstract

Mesoporous bioactive glass (MBG) fibers have been synthesized using the combination of a sol–gel process and a high velocity spray procedure by carefully controlling the sol composition, acidity and water content. A three-dimensional (3D) macro-structure with ∼50–100 μm interconnected macropores is formed in the spraying process. The MBG fibers possess well-ordered hexagonal mesostructure and excellent in vitro bioactivities. Sprague–Dawley (SD) rat osteoblasts have been cultured on MBG fibers. It is found that the MBG fibers have good cell biocompatibility and the 3D macro-structure is beneficial for cell attachment. It is anticipated that MBG fibers with controlled mesostructure and excellent in vitro bioactivity are good candidates for future tissue-engineering scaffolds.

Keywords

Mesoporous Bioactive glass Sol–gel Fibers Tissue-engineering 

References

  1. 1.
    Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) J Biomed Mater Res 2:117CrossRefGoogle Scholar
  2. 2.
    Hench LL (1991) J Am Ceram Soc 74:1487CrossRefGoogle Scholar
  3. 3.
    Hench LL, Polak JM (2002) Science 295:1014CrossRefGoogle Scholar
  4. 4.
    Vallet-Regi M, Ragel CV, Salinas AJ (2003) Eur J Inorg Chem 1029Google Scholar
  5. 5.
    Hatcher BM, Seegert CA, Brennan AB (2003) J Biomed Mater Res Part A 66A:840CrossRefGoogle Scholar
  6. 6.
    Clupper DC, Gough JE, Hall MM, Clare AG, LaCourse WC, Hench LL (2003) J Biomed Mater Res Part A 67A:285CrossRefGoogle Scholar
  7. 7.
    De Diego MA, Coleman NJ, Hench LL (2000) J Biomed Mater Res 53:199CrossRefGoogle Scholar
  8. 8.
    Marcolongo M, Ducheyne P, LaCourse WC (1997) J Biomed Mater Res 37:440CrossRefGoogle Scholar
  9. 9.
    Kim HW, Kim HE, Knowles JC (2006) Adv Funct Mater 16:1529CrossRefGoogle Scholar
  10. 10.
    Peltola T, Jokinen M, Veittola S, Rahiala H, Yli-Urpo A (2001) Biomaterials 22:589CrossRefGoogle Scholar
  11. 11.
    Domingues RZ, Clark AE, Brennan AB (2001) J Biomed Mater Res 55:468CrossRefGoogle Scholar
  12. 12.
    Orefice RL, Hench LL, Clark AE, Brennan AB (2001) J Biomed Mater Res 55:460CrossRefGoogle Scholar
  13. 13.
    Andrade AL, Valerio P, Goes AM, Leite MD, Domingues RZ (2006) J Non-Cryst Solids 352:3508CrossRefGoogle Scholar
  14. 14.
    Yan XX, Yu CZ, Zhou XF, Tang JW, Zhao DY (2004) Angew Chem Int Ed 43:5980CrossRefGoogle Scholar
  15. 15.
    Yan XX, Deng HX, Huang XH, Lu GQ, Qiao SZ, Zhao DY, Yu CZ (2005) J Non-Cryst Solids 351:3209CrossRefGoogle Scholar
  16. 16.
    Yan XX, Huang XH, Yu CZ, Deng HX, Wang Y, Zhang ZD, Qiaoc SZ, Lu GQ, Zhao DY (2006) Biomaterials 27:3396CrossRefGoogle Scholar
  17. 17.
    Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) J Biomed Mater Res 24:721CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jing Yi
    • 1
  • Guangfeng Wei
    • 1
  • Xiaohui Huang
    • 1
  • Lingzhi Zhao
    • 1
  • Quan Zhang
    • 2
  • Chengzhong Yu
    • 1
  1. 1.Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsFudan UniversityShanghaiP.R. China
  2. 2.Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiP.R. China

Personalised recommendations