Journal of Sol-Gel Science and Technology

, Volume 46, Issue 3, pp 259–271 | Cite as

Materials doping through sol–gel chemistry: a little something can make a big difference

  • J.-M. NedelecEmail author
  • L. Courtheoux
  • E. Jallot
  • C. Kinowski
  • J. Lao
  • P. Laquerriere
  • C. Mansuy
  • G. Renaudin
  • S. Turrell
Original Paper


Several examples of sol–gel preparation of doped materials are taken to illustrate the various situations where the doping elements are responsible for the main function of the material or govern its structure. Other examples are used to illustrate that sometimes unexpected effects can be observed like structural modification and the appearance of new properties. Rare earth doped scintillators demonstrate higher homogeneity for materials prepared via sol–gel chemistry when compared with classical solid state reaction. The XRD study of rare earth doped orthoborates shows that doping can affect the vaterite to calcite phase transition observed in these compounds. A Raman spectroscopic study has been performed on doped silica xerogels and it has been shown that doping ions can modify greatly the densification process in these amorphous materials. Finally, it has been evidenced that sol–gel chemistry allows the preparation of bioactive ceramics with enhanced properties. In particular Zn-doped HAP with anti inflammatory properties has been prepared and Sr-doped bioactive glasses have demonstrated superior in-vitro bioactivity as evidenced by PIXE-RBS study.


Doping Bioceramics Glasses Scintillators Structure Silica gels Raman spectroscopy Hydroxyapatite Bioactive glasses 



The work described in this paper spread over the last 10 years and could have not been possible without numerous collaborations. Among them, the authors would like to thank particularly M. Bouazaoui and B. Capoen from University of Lille, M. Ferrari from CNR Trento, L. L. Hench from Imperial College and R. Mahiou from University of Clermont-Ferrand. Financial support from the French FNS under project LuNaTIC (ACI Nanostructures) and ANR under project Bioverres (PNANO 2005) and Nanobonefiller (PNANO 2006) is gratefully acknowledged.


  1. 1.
    (a) Sze SM, Ng Kwok K (2006) Physics of semiconductor devices, 3rd edn. Wiley, New York; (b) Yu PY, Cardona M (2004) Fundamentals of semiconductors: physics and materials properties. Springer; (c) Schubert EF (1993) Doping in III–V semiconductors. Cambridge University PressGoogle Scholar
  2. 2.
    Blasse G, Grabmaier BC (1994) Luminescent materials. Springer-VerlagGoogle Scholar
  3. 3.
    (a) (1992) Proc. of heavy scintillators for scientific and industrial applications, Chamonix, France. Edition Frontiere; (b) (1994) Proc. Symp. scintillator and phosphor materials. Materials Research Society, Pittsburgh, 348; (c) (1995) Proc. of inorganic scintillators and their applications. Delft University Press, Delft, Netherlands; (1997) Shangaï Branch Press, Shangaï China; (1999) Moscow, Russia; (2001) Chamonix, France; (2003) Valencia, SpainGoogle Scholar
  4. 4.
    (a) Holl I, Lorenz E, Mageras G (1988) IEEE Trans Nucl Sci 35(1):105–109; (b) Grabmaier BC (1984) IEEE Trans Nucl Sci 31(1):372–376; (c) Brooks FD (1979) Nucl Inst Methods 162(1–3):477–505; (d) Moszynski M, Kapusta M, Mayhugh M et al (1997) IEEE Trans Nucl Sci 44(3):1052–1061; (e) van Eijk CWE (2001) Nucl Inst Methods Phys Res A 460(1):1–14; (f) Derenzo SE, Moses WW, Cahoon JL et al (1990) IEEE Trans Nucl Sci 37(2):203–208Google Scholar
  5. 5.
    Melcher CL, Schweitzer JS (1992) Nucl Instrum Methods Phys Res A 314:212CrossRefGoogle Scholar
  6. 6.
    Melcher CL, Schweitzer JS U.S. Patents 4,958,080; 5,-025,151; 5,660,627Google Scholar
  7. 7.
    Mansuy C, Nedelec JM, Mahiou R (2004) J Mater Chem 14:3274–3280CrossRefGoogle Scholar
  8. 8.
    Mansuy C, Mahiou R, Nedelec JM (2003) Chem Mat 15(17):3242–3244CrossRefGoogle Scholar
  9. 9.
    Gustafsson T, Klintenberg M, Derenzo SE, Weber MJ, Thomas JO (2001) Acta Cryst C 57:668CrossRefGoogle Scholar
  10. 10.
    Mansuy C, Leroux F, Mahiou R, Nedelec JM (2005) J Mat Chem 15(38):4129–4135CrossRefGoogle Scholar
  11. 11.
    Nedelec JM, Mansuy C, Mahiou R (2003) J Mol Struct 651–653C:165–170CrossRefGoogle Scholar
  12. 12.
    Mansuy C, Nedelec JM, Dujardin C, Mahiou R (2006) J Sol–Gel Sci Technol 38(1):97–105CrossRefGoogle Scholar
  13. 13.
    Mansuy C, Nedelec JM, Dujardin C, Mahiou R (2004) J Sol–Gel Sci Technol 32:253–258CrossRefGoogle Scholar
  14. 14.
    Mansuy C, Nedelec JM, Dujardin C, Mahiou R (2007) Opt Mat 29:697–702CrossRefGoogle Scholar
  15. 15.
    Mansuy C, Tomasella E, Gengembre L, Grimblot J, Mahiou R, Nedelec JM (2006) Thin Solid Films 515:666–669CrossRefGoogle Scholar
  16. 16.
    Nedelec JM, Avignant D, Mahiou R (2002) Chem Mat 14:651CrossRefGoogle Scholar
  17. 17.
    Böhlhoff R, Bambauer U, Hoffmann W (1971) Zietschrift fur Kritallographie 133:386Google Scholar
  18. 18.
    Meyer HJ (1972) Naturwissenschaften 59:215CrossRefGoogle Scholar
  19. 19.
    Levin EM, Roth RS, Martin JB (1961) Am Mineral 46:1030Google Scholar
  20. 20.
    Boyer D, Bertrand-Chadeyrond G, Mahiou R, Lou L, Brioude A, Mugnier J (2001) Opt Mat 15:21–27CrossRefGoogle Scholar
  21. 21.
    Rodriguez-Carvajal J (2004) PROGRAM FullProf.2k—version 3.20, Laboratoire Léon Brillouin (CEA-CNRS), France, 2005 (FullProf.2k manual available on See also J. Rodriguez-Carvajal, T. Roisnel, EPDIC-8, 23–26 May 2002, Trans. Tech. Publication Ltd, Uppsala, Sweden, Mater Sci Forum 123:443
  22. 22.
    Rousset JL, Duval E, Boukenter A, Champagnon B, Monteil A, Serughetti J, Dumas J (1988) J Non-Cryst Solids 107:27CrossRefGoogle Scholar
  23. 23.
    Matos MC, Ilharco LM, Almeida RM (1992) J Non-Cryst Solids 147–148:232CrossRefGoogle Scholar
  24. 24.
    Abidi N, Deroide B, Zanchetta JV, Bourret D, Elmkami H, Rumori P (1996) Phys Chem Glasses 37(4):149Google Scholar
  25. 25.
    Menassa PE, Simkin DJ, Taylor P (1986) J Lumin 35:223CrossRefGoogle Scholar
  26. 26.
    Levy D, Reisfeld R, Avnir D (1984) Chem Phys Lett 109:593CrossRefGoogle Scholar
  27. 27.
    Ferrari M, Campostrini R, Carturan G, Montagna M (1992) Philos Mag B 65:251CrossRefGoogle Scholar
  28. 28.
    Kinowski C, Turrell S, Bouazaoui M, Capoen B, Nedelec JM, Hench LL (2004) J Sol–Gel Sci Technol 32:345–348CrossRefGoogle Scholar
  29. 29.
    Kinowski C, Bouazaoui M, Bechara R, Hench LL, Nedelec JM, Turrell S (2001) J Non-Cryst Solids 291:143CrossRefGoogle Scholar
  30. 30.
    Galeener FL (1979) Phys Rev B 19(8):4292CrossRefGoogle Scholar
  31. 31.
    Galeener FL, Mikkelsen JC Jr (1981) Phys Rev B 23(10):5527CrossRefGoogle Scholar
  32. 32.
    Barrio RA, Galeener FL, Martinez E, Elliott RJ (1993) Phys Rev B 48(21):15672CrossRefGoogle Scholar
  33. 33.
    Bertoluzza A, Fagnano C, Morelli MA (1982) J Non-Cryst Solids 48:117CrossRefGoogle Scholar
  34. 34.
    Boukenter A, Duval E (1998) Phil Mag B 77(2):557Google Scholar
  35. 35.
    Nedelec JM, Bouazaoui M, Turrell S (1999) J Non-Cryst Solids 243:209CrossRefGoogle Scholar
  36. 36.
    Kinowski C, Capoen B, Hench LL, Nedelec J-M, Bechara R, Turrell S, Bouazaoui M (2004) J Non-Cryst Solids 345–346:570–574CrossRefGoogle Scholar
  37. 37.
    Nedelec JM, Bouazaoui M, Turrell S (1999) Phys Chem Glasses 40:264Google Scholar
  38. 38.
    Robbe O, Woznica K, Berrier E, Ehrhart G, Capoen B, Bouazaoui M, Turrell S (2006) Thin Solid Films 515(1):73–79CrossRefGoogle Scholar
  39. 39.
    Nedelec JM, Capoen B, Turrell S, Bouazaoui M (2001) Thin Solid Films 382:81CrossRefGoogle Scholar
  40. 40.
    Berrier E, Capoen B, Bouazaoui M (2005) Glass Technol 46(2):89–93Google Scholar
  41. 41.
    Trimmel G, Schubert U (2001) J Non-Cryst Solids 296:188–200CrossRefGoogle Scholar
  42. 42.
    Hench LL, Splinter RJ, Greenlee TK, Allen WC (1971) J Biomed Mater Res 2:117CrossRefGoogle Scholar
  43. 43.
    Hench LL (1998) J Am Ceram Soc 81(7):1705–1728CrossRefGoogle Scholar
  44. 44.
    Degroot K (1980) Biomaterials 1(1):47–50CrossRefGoogle Scholar
  45. 45.
    Ducheyne P (1987) J Biomed Mat Res 21(A2):219–236Google Scholar
  46. 46.
    Doremus RH (1992) J Mat Sci 27(2):285–297CrossRefGoogle Scholar
  47. 47.
    Li R, Clark AE, Hench LL (1991) J Appl Biomater 2:231CrossRefGoogle Scholar
  48. 48.
    Lao J, Nedelec JM, Moretto P, Jallot E (2006) Nucl Intrum Methods B 245/2:511–518CrossRefGoogle Scholar
  49. 49.
    Lao J, Nedelec JM, Moretto P, Jallot E (2007) Nucl Instrum Methods B 261:488–493CrossRefGoogle Scholar
  50. 50.
    Bloebaum RD, DuPont JA (1993) J Arthroplasty 8:195–202CrossRefGoogle Scholar
  51. 51.
    Bloebaum RD, Beeks J, Dorr LD, Savory CG, DuPont JA, Hofmann AA (1994) Clin Orthop 298:19–26Google Scholar
  52. 52.
    Laquerriere P, Grandjean-Laquerriere A, Jallot E, Balossier G, Frayssinet P, Guenounou M (2003) Biomaterials 24:2739–2747CrossRefGoogle Scholar
  53. 53.
    Grandjean-Laquerriere A, Laquerriere P, Laurent-Maquin D, Guenounou M, Phillips TM (2004) Biomaterials 25(28):5921–5927CrossRefGoogle Scholar
  54. 54.
    Trindade MCD, Lind M, Nakashima Y, Sun D, Goodman SB, Schurman DJ, Smith RL (2001) Biomaterials 22:2067–2073CrossRefGoogle Scholar
  55. 55.
    Yamaguchi M, Inamoto K, Suketa Y (1986) Res Exp Med 186(5):337–342CrossRefGoogle Scholar
  56. 56.
    Hashizume M, Yamaguchi M (1993) Mol Cell Biochem 122(1):59–64CrossRefGoogle Scholar
  57. 57.
    Kishi S, Yamaguchi M (1994) Biochem Pharmacol 48(6):1225–1230CrossRefGoogle Scholar
  58. 58.
    Bao B, Prasad AS, Beck FW, Godmere M (2003) Am J Physiol Endocrinol Metab 285(5):1095Google Scholar
  59. 59.
    Jallot E, Nedelec JM, Grimault AS, Chassot E, Laquerriere P, Grandjean-Laquerriere A, Laurent-Maquin D (2005) Colloids Surf B 42:205–210CrossRefGoogle Scholar
  60. 60.
    Grandjean-Laquerriere A, Laquerriere P, Jallot E, Nedelec JM, Guenounou M, Laurent-Maquin D, Philips T (2006) Biomaterials 27:3195–3200CrossRefGoogle Scholar
  61. 61.
    Laquerriere P, Grandjean-Laquerriere A, Jallot E, Nedelec J-M A Zn-substituted hydroxyapatite with reduced inflammatory properties and uses thereof. (US 60/751,977)Google Scholar
  62. 62.
    Meunier PJ, Lorenc RS, Smith IG (2002) Osteoporos Int 13(3):66Google Scholar
  63. 63.
    Marie PJ (2005) Curr Opin Pharmacol 5:633–636CrossRefGoogle Scholar
  64. 64.
    Jensen JEB, Stang H, Kringsholm B (1997) Bone 20(4):104–108Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • J.-M. Nedelec
    • 1
    • 2
    Email author
  • L. Courtheoux
    • 3
  • E. Jallot
    • 3
  • C. Kinowski
    • 4
  • J. Lao
    • 3
  • P. Laquerriere
    • 5
  • C. Mansuy
    • 1
    • 2
    • 6
  • G. Renaudin
    • 1
    • 2
  • S. Turrell
    • 4
  1. 1.Laboratoire des Matériaux Inorganiques, CNRS, UMR 6002Université Blaise Pascal, Clermont-Ferrand 2Aubiere CedexFrance
  2. 2.Ecole Nationale Supérieure de Chimie de Clermont-FerrandAubiere CedexFrance
  3. 3.Laboratoire de Physique Corpusculaire de Clermont-Ferrand, CNRS/IN2P3, UMR 6533Université Blaise Pascal, Clermont-Ferrand 2Aubiere CedexFrance
  4. 4.Laboratoire de Spectrochimie Infrarouge et Raman, CNRS, UMR 8516, Centre d’Etudes et de Recherches Lasers et ApplicationsUniversité des Sciences et Technologies de LilleVilleneuve d’AscqFrance
  5. 5.Laboratoire de Microscopie ElectroniqueINSERM – ERM 0203, IFR 53Reims CedexFrance
  6. 6.Synthèse, Structure et Fonctions de Molécules Bioactives, CNRS, UMR 7613Université Pierre et Marie CurieParis Cedex 05France

Personalised recommendations