Journal of Sol-Gel Science and Technology

, Volume 44, Issue 1, pp 29–40 | Cite as

Polydicyclopentadiene based aerogel: a new insulation material

  • Je Kyun LeeEmail author
  • George L. Gould
Original Paper


Lightweight polydicyclopentadiene (pDCPD) based aerogels were developed via a simple sol-gel processing and supercritical drying method. The uniform pDCPD wet gels were first prepared at room temperature and atmospheric pressure through ring opening metathesis polymerization (ROMP) incorporating homogeneous ruthenium catalyst complexes (Grubbs catalyst). Gelation kinetics were significantly affected by both catalyst content and target density (i.e., solid content), while gel solvents also played important role in determining the appearance and uniformity of wet gel and aerogel products. A supercritical carbon dioxide (CO2) drying method was used to extract solvent from wet pDCPD gels to afford nanoporous aerogel solid. A variety of pDCPD based aerogels were synthesized by varying target density, catalyst content, and solvent and were compared with their xerogel analogs (obtained by ambient pressure solvent removal) for linear shrinkage and thermal conductivity value (1 atm air, 38 °C mean temperature). Target density played a key role in determining porosity and thermal conductivity of the resultant pDCPD aerogel. Differential scanning calorimetery (DSC) demonstrated that the materials as produced were not fully-crosslinked. The pDCPD based aerogel monoliths demonstrated high porosities, low thermal conductivity values, and inherent hydrophobicity. These aerogel materials are very promising candidates for many thermal and acoustic insulation applications including cryogenic insulation.


Polydicyclopentadiene (pDCPD) Aerogels Ring opening metathesis polymerization (ROMP) Supercritical drying Nanoporous Insulation 



This work was conducted by the financial support of the United States Defense Advanced Research Projects Agency (DARPA), SBIR Contract No. W31P4Q-05-C-0231. The authors are grateful to Mr. Max Mesham, Ms. Geeta Bhakhari, and Mr. Nathan Bhobho for their helps in preparing samples and also, to Ms. Sara Rosenberg, Dr. Shannon White, and Dr. Jeffrey Boehme for their valuable helps. The authors would like to thank Dr. Karen Wood in DARPA for her continuous supports for this work. The authors are also grateful to Dow Corning Analytical Lab for SEM measurement.


  1. 1.
    Kistler SS (1931) Nature 127:741 Google Scholar
  2. 2.
    Kistler SS (1932) J Physical Chem 36:52 CrossRefGoogle Scholar
  3. 3.
    LeMay JD, Hopper RW, Hrubesh LW, Pekala RW, MRS Bulletin, December 1990, p 19Google Scholar
  4. 4.
    Schaefer D, MRS Bulletin, April 1994, p 49Google Scholar
  5. 5.
    Hrubesh LW, Poco JF (1995) J Non-Cryst Solids 188:46CrossRefGoogle Scholar
  6. 6.
    Schmidt M, Schwertfeger F (1998) J Non-Cryst Solids 225:364CrossRefGoogle Scholar
  7. 7.
    Fricke J, Emmerling A (1998) J Sol-Gel Sci Tech 13:299CrossRefGoogle Scholar
  8. 8.
    Hüsing N, Schubert U (1998) Angrew Chem Int Ed 37:22CrossRefGoogle Scholar
  9. 9.
    Pierre AC, Pajonk GM (2002) Chem Rev 102:4243CrossRefGoogle Scholar
  10. 10.
    Akimov YK (2003) Instrum Exp Tech 46:287CrossRefGoogle Scholar
  11. 11.
    Pajonk GM (2003) Colloid Polym Sci 281:637CrossRefGoogle Scholar
  12. 12.
    Bisson A, Rigacci A, Lecomte D, Rodier E, Achard P (2003) Drying Technol 21:593CrossRefGoogle Scholar
  13. 13.
    Pekala RW, Schaefer DW (1993) Macromolecules 26:5487CrossRefGoogle Scholar
  14. 14.
    Pekala RW (1989) J Mater Sci 24:3221CrossRefGoogle Scholar
  15. 15.
    Pekala RW, Kong FM (1989) Polym Prepr 30:221Google Scholar
  16. 16.
    Ward RL, Pekala RW (1990) Polym Prepr 31:167Google Scholar
  17. 17.
    Pekala RW, Alviso CT, LeMay JD (1990) J Non-Cryst Solids 125:67CrossRefGoogle Scholar
  18. 18.
    Pekala RW, Alviso CT, Kong FM, Hulsey SS (1992) J Non-Cryst Solids 145:90CrossRefGoogle Scholar
  19. 19.
    Lu X, Arduini-Schuster MC, Kuhn J, Nilsson O, Fricke J, Pekala RW (1992) Science 255:971CrossRefGoogle Scholar
  20. 20.
    Lu X, Caps R, Fricke J, Alviso CT, Pekala RW (1995) J Non-Cryst Solids 188:226CrossRefGoogle Scholar
  21. 21.
    Rigacci A, Marechal JC, Repoux M, Moreno M, Achard P (2004) J Non-Cryst Solids 350:372CrossRefGoogle Scholar
  22. 22.
    Biesmans G, Randall D, Francais E, Perrut M (1998) J Non-Cryst Solids 225:36CrossRefGoogle Scholar
  23. 23.
    Biesmans G, Mertens A, Duffours L, Woignier T, Phalippou J (1998) J Non-Cryst Solids 225:64CrossRefGoogle Scholar
  24. 24.
    Fischer F, Rigarcci A, Pirad R, Berthon-Fabry S, Achard P (2006) Polymer 47:7636CrossRefGoogle Scholar
  25. 25.
    Tan C, Fung BM, Newman JK, Vu C (2001) Adv Mater 13:644CrossRefGoogle Scholar
  26. 26.
    Hine PJ, Leejarkpai T, Khosravi E, Duckett RA, Feast WJ (2001) Polymer 42:9413CrossRefGoogle Scholar
  27. 27.
    Kessler MR, White SR (2002) J Polym Sci Part A: Polym Chem 40:2373CrossRefGoogle Scholar
  28. 28.
    Furstner A (2000) Angew Chem Int Ed 39:3012CrossRefGoogle Scholar
  29. 29.
    Grubbs RH (2004) Tetrahedron 60:7117CrossRefGoogle Scholar
  30. 30.
    Lee JK, Mesham M, Chittick H, Gould GL, DARPA SBIR Phase I Contract No. W31P4Q-04-C-R087, Final Report, September (2004)Google Scholar
  31. 31.
    Martina AD, Hilborn JG, Mu1hlebach A (2002) Macromolecules 33:2916CrossRefGoogle Scholar
  32. 32.
    Davidson TA, Wagener KB (1998) J Mol Catal A 133:67CrossRefGoogle Scholar
  33. 33.
    Lee JK, Gould GL (2005) J Sol-Gel Sci Tech 34:281CrossRefGoogle Scholar
  34. 34.
    Hummer E, Rettelbach T, Lu X, Fricke J (1993) Thermochimica Acta 218:269CrossRefGoogle Scholar
  35. 35.
    Brinker CJ, Scherer GW (1990) Sol-Gel Science Ch 9. Academic Press, San Diego Google Scholar
  36. 36.
    Program Manuals of Statisca, Vol. IV Industrial statistics, Experimental design, StatSoft (1995), p 4254Google Scholar
  37. 37.
    Abadie MJ, Dimonie M, Couve C, Dragutan V (2000) Eur Polym J 36:1213CrossRefGoogle Scholar
  38. 38.
    Grubbs RH, Woodson CS, USP 6,020,443 and USP 5728785Google Scholar
  39. 39.
    Paul A, Clyde O (1997) Analytical methods in fine particle technology Ch 3. Micrometrics Instrument, Norcross GAGoogle Scholar
  40. 40.
    Lee OJ, Lee KH, Kim SY, Yoo KP (2002) J Non-Cryst Solids 298:287CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Research and Development DivisionAspen Aerogels, Inc.NorthboroughUSA

Personalised recommendations