Journal of Sol-Gel Science and Technology

, Volume 42, Issue 2, pp 173–179 | Cite as

Synthesis of non-agglomerated Ba0.77Ca0.23TiO3 nanopowders by a modified polymeric precursor method

  • Ronaldo Santos da Silva
  • Maria Inês Basso Bernardi
  • Antonio Carlos Hernandes


In this work, we have studied the influence of the pH on the synthesis and structural properties of the Ba0.77Ca0.23TiO3 nanopowders synthesized by a modified polymeric precursor method, in order to achieve non-agglomerated powders. Synthesis, morphology, thermal reactions, crystallite and average particle size of the synthesized powders were investigated through thermal analysis (DTA/TG), X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and Infrared spectroscopy. In summary, Ba0.77Ca0.23TiO3 nanopowders were synthesized for the first time at a relative low temperature (500 °C). It was also found that the alkalinity and acidity of the solution presented a great influence on the powder properties. The best results were obtained from solutions with pH = 8.5 and 11 whose nanopowders presented weakly agglomerate, with homogeneous particle size and a narrow size distribution (30–40 nm). This behavior could be explained based on the FT-IR results in which it was possible to see the increased of the chelation in higher pHs.


Chemical synthesis BCT nanopowders BaTiO3 Pechini 



The authors wish to acknowledge the financial support from the Brazilian funding agencies, FAPESP and CNPq. The authors also gratefully acknowledge R.L. Moreira for the FT-IR analysis.


  1. 1.
    Kuper C, Pankrath R, Hesse H (1997) Appl Phys A 65:301CrossRefGoogle Scholar
  2. 2.
    Mazon T, Hernandes AC, Souza AG, Moraes APA, Ayala AP, Freire PTC, Mendes J (2005) J Appl Phys 97, Art. No. 104113 Part 1Google Scholar
  3. 3.
    Tiwari VS, Pandey D, Groves P (1989) J Phys D – Appl Phys 22:837CrossRefGoogle Scholar
  4. 4.
    Krishna PSR, Pandey D, Tiwari VS, Chakravarthy R, Dasannacharya BA (1993) Appl Phys Lett 62:231CrossRefGoogle Scholar
  5. 5.
    Jayanthi S, Kutty TRN (2000) Mater Sci Eng B 110:202CrossRefGoogle Scholar
  6. 6.
    Silva RS, Antonelli E, Hernandes AC (in press) CerâmicaGoogle Scholar
  7. 7.
    Buscaglia MT, Buscaglia V, Viviani M, Petzelt J, Savinov M, Mitoseriu L, Testino A, Nanni P, Harnagea C, Zhao Z, Nygren M (2004) Nanotechnology 15:1113CrossRefGoogle Scholar
  8. 8.
    Valiev R (2002) Nature 419:887CrossRefGoogle Scholar
  9. 9.
    Groza JR (1999) Nanostruct Mater 12:987CrossRefGoogle Scholar
  10. 10.
    Luan W, Gao L (2001) Ceram Int 27:645CrossRefGoogle Scholar
  11. 11.
    Yue Z, Guo W, Zhou J, Gui ZL, Li LT (2004) J Magn Magn Mater 270:216CrossRefGoogle Scholar
  12. 12.
    Fang TT, Tsay JD (2001) J Am Ceram Soc 84:2475Google Scholar
  13. 13.
    Kumar S, Messing GL, White WB (1993) J Am Ceram Soc 76:617CrossRefGoogle Scholar
  14. 14.
    Neves PP, Maia LJQ, Bernardi MIB, Zanatta AR, Mastelaro VR, Zanetti SM, Leite ER (2004) J Sol--Gel Sci Techn 29:89CrossRefGoogle Scholar
  15. 15.
    Arvanitidis I, Sichen D, Seetharaman S (1996) Metall Mater Trans B27:409Google Scholar
  16. 16.
    Silva RS, Hernandes AC (2006) Mater Sci Forum 514–516:1216CrossRefGoogle Scholar
  17. 17.
    Tsay JD, Fang TT, Gubiotti TA, Ying JY (1998) J Mater Sci 33:3721CrossRefGoogle Scholar
  18. 18.
    Kakihana M, Arima M, Nakamura Y, Yashima M, Yoshimura M (1999) Chem Mater 11:438CrossRefGoogle Scholar
  19. 19.
    Duran P, Capel F, Tartaj J, Moure C (2001) J Mater Res 16:197Google Scholar
  20. 20.
    Nakamoto K (1986) Infrared and raman spectra of inorganic and coordinate compounds, 4th edn. Wiley Press, New York, p 231Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ronaldo Santos da Silva
    • 1
  • Maria Inês Basso Bernardi
    • 1
  • Antonio Carlos Hernandes
    • 1
  1. 1.Grupo Crescimento de Cristais e Materiais Cerâmicos, Instituto de Física de São CarlosUniversidade de São PauloSão CarlosBrazil

Personalised recommendations