Journal of Sol-Gel Science and Technology

, Volume 43, Issue 1, pp 111–123

UV curing of organic–inorganic hybrid coating materials

  • Yung-Hoe Han
  • Alan Taylor
  • Michael D. Mantle
  • Kevin M. Knowles
Original Paper

Abstract

The effect of UV-curing time on the mechanism of interaction between the various precursor phases in a novel sol–gel-derived organic–inorganic hybrid coating material and the resulting mechanical and thermal properties of this material when coated onto substrates in thin film form have been examined using a variety of chemical and physical characterisation methods. Microstructurally, the hybrid coating materials examined were all a single amorphous phase and were all optically transparent. The degree of interaction between the organic and inorganic phases, the scratch behaviour of the coating materials and the thermal stability of the coating materials were all found to depend strongly on the UV curing time. For the particular proportions of inorganic and organic components used to make up this hybrid coating material, an optimum UV curing time of 10 min under a UV intensity of 46.3 mW cm−2 was found to produce transparent coatings which adhered well to the substrates and which were robust in scratch tests on aluminium and polycarbonate substrates and abrasion tests on polycarbonate substrates.

Keywords

Organic–inorganic hybrid material Sol–gel Tetraethoxysilane (TEOS) 3-(trimethoxysilyl)propyl methacrylate (MPTMA) UV curing 

References

  1. 1.
    Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, San DiegoGoogle Scholar
  2. 2.
    Messori M, Toselli M, Pilati F, Fabbri E, Busoli S, Pasquali L, Nannarone S (2003) Polymer 44:4463CrossRefGoogle Scholar
  3. 3.
    David IA, Scherer GW (1995) Chem Mater 7:1957CrossRefGoogle Scholar
  4. 4.
    Jang J, Bae J, Kang D (2001) J Appl Polym Sci 82:2310CrossRefGoogle Scholar
  5. 5.
    Frings S, Meinema HA, van Nostrum CF, van der Linde R (1998) Prog Org Coat 33:126CrossRefGoogle Scholar
  6. 6.
    Chan C-K, Chu I-M (2001) Polymer 42:6089CrossRefGoogle Scholar
  7. 7.
    Wei Y, Feng Q, Xu J, Dong H, Qiu K-Y, Jansen SA, Yin R, Ong KK (2000) Adv Mater 12:1448CrossRefGoogle Scholar
  8. 8.
    Landry CJT, Coltrain BK, Brady BK (1992) Polymer 33:1486CrossRefGoogle Scholar
  9. 9.
    Silveira KF, Yoshida IVP, Nunes SP (1995) Polymer 36:1425CrossRefGoogle Scholar
  10. 10.
    Masson F, Decker C, Jaworek T, Schwalm R (2000) Prog Org Coat 39:115CrossRefGoogle Scholar
  11. 11.
    Tasic S, Bozic B, Dunjic B (2004) Prog Org Coat 51:321CrossRefGoogle Scholar
  12. 12.
    Yu Y-Y, Chen C-Y, Chen W-C (2003) Polymer 44:593CrossRefGoogle Scholar
  13. 13.
    Joseph R, Zhang S, Ford WT (1996) Macromolecules 29:1305CrossRefGoogle Scholar
  14. 14.
    Soloukhin VA, Posthumus W, Brokken-Zijp JCM, Loos J, de With G (2002) Polymer 43:6169CrossRefGoogle Scholar
  15. 15.
    Medda SK, Kundu D, De G (2003) J Non-Cryst Solids 318:149CrossRefGoogle Scholar
  16. 16.
    Taylor A World Patent 0125343 (12 April 2001)Google Scholar
  17. 17.
    Sanchez C, Julián B, Belleville P, Popall M (2005) J Mater Chem 15:3559CrossRefGoogle Scholar
  18. 18.
    Novak BM (1993) Adv Mater 5:422CrossRefGoogle Scholar
  19. 19.
    Han YH, Taylor A, Mantle MD, Knowles KM (2007) J Non-Cryst Solids 353:313CrossRefGoogle Scholar
  20. 20.
    Innocenzi P, Brusatin G (2004) J Non-Cryst Solids 333:137CrossRefGoogle Scholar
  21. 21.
    Van de Leest RE (1995) Appl Surf Sci 86:278CrossRefGoogle Scholar
  22. 22.
    Schmidt H, Mennig M, http://www.solgel.com/articles/Nov00/mennig.htm, accessed 12 October 2006Google Scholar
  23. 23.
    Braithwaite M, Davidson S, Holman R, Lowe C, Oldring PKT, Salim MS, Wall C (1991) Chemistry and technology of UV and EB formulation for coatings, inks and paints, Volume 4: Formulation. SITA Technology Ltd., London, UK, pp 125–129Google Scholar
  24. 24.
    Mehnert R, Pincus A, Janorsky I, Stowe R, Berejka A (1998) Wiley/SITA Series in surface coatings technology, Volume 1: UV & EB curing technology & equipment, Chapter III. John Wiley and Sons, Chichester, UKGoogle Scholar
  25. 25.
    Jeong S, Jang W-H, Moon J (2004) Thin Solid Films 466:204CrossRefGoogle Scholar
  26. 26.
    Chen J, Soucek MD (2003) Europ Polym J 39:505CrossRefGoogle Scholar
  27. 27.
    Chang TC, Wang YT, Hong YS, Chiu YS (2000) J Poly Sci: Part A: Poly Chem 38:1972CrossRefGoogle Scholar
  28. 28.
    Lebeau L, Maquet J, Sanchez C, Beaume F, Lauprêtre F (1997) J Mater Chem 7:989CrossRefGoogle Scholar
  29. 29.
    Chiang C-L, Ma C-CM (2004) Polym Degrad Stabil 83:207CrossRefGoogle Scholar
  30. 30.
    Yan Y-G, Hoshino Y, Duan Z-B, Chaudhuri SR, Sarkar A (1997) Chem Mater 9:2583CrossRefGoogle Scholar
  31. 31.
    Mirley CL, Koberstein JT (1995) Langmuir 11:1049CrossRefGoogle Scholar
  32. 32.
    Pan Q, Gonzalez GB, Composto RJ, Wallace WE, Arkles B, Figge LK, Berry DH (1999) Thin Solid Films 345:244CrossRefGoogle Scholar
  33. 33.
    Hsiue G-H, Kuo W-J, Huang Y-P, Jeng R-J (2000) Polymer 41:2813CrossRefGoogle Scholar
  34. 34.
    Wei Y, Bakthavatchalam R, Whitecar CK (1990) Chem Mater 2:337CrossRefGoogle Scholar
  35. 35.
    Strawbridge I, James PF (1986) J Non-Cryst Solids 86:381CrossRefGoogle Scholar
  36. 36.
    Burnett PJ, Rickerby DS (1987) Thin Solid Films 154:403CrossRefGoogle Scholar
  37. 37.
    Ichimura H, Ishii Y (2003) Surf Coat Tech 165:1CrossRefGoogle Scholar
  38. 38.
    Hedenqvist P, Olsson M, Jacobson S, Söderberg S (1990) Surf Coat Tech 41:31CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yung-Hoe Han
    • 1
  • Alan Taylor
    • 2
  • Michael D. Mantle
    • 3
  • Kevin M. Knowles
    • 1
  1. 1.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK
  2. 2.TWIGreat AbingtonUK
  3. 3.Department of Chemical EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations