Journal of Sol-Gel Science and Technology

, Volume 40, Issue 2–3, pp 163–179 | Cite as

New insight in the role of modifying ligands in the sol-gel processing of metal alkoxide precursors: A possibility to approach new classes of materials

  • Vadim G. KesslerEmail author
  • Gerald I. Spijksma
  • Gulaim A. Seisenbaeva
  • Sebastian Håkansson
  • Dave H. A. Blank
  • Henny J. M. Bouwmeester
Chemistry and Characterisation


This paper summarizes recent literature data and presents new experimental data on the mechanisms of chemical modification, hydrolysis and polycondensation of the alkoxides and demonstrates possibilities to approach new classes of materials, exploiting these mechanisms. Low reactivity of silicon alkoxides is improved by either basic catalysis exploiting an SN2 mechanism or acidic catalysis facilitating a proton-assisted SN1 mechanism as well as by modification with chelating ligands. Metal alkoxides are much stronger Lewis bases compared to silicon alkoxides and the acidity of water is strong enough to achieve their rapid hydrolysis via proton-assisted SN1 pathway even in the absence of additional catalysts. Introduction of the modifying chelating ligands is leading generally to increased charge distribution in the precursor molecules. Modifying chelating ligands are also appreciably smaller than the alkoxide ligands they replace. The modification with chelating ligands is thus facilitating the kinetics of hydrolysis and polycondensation. The size and shape of the primary particles formed in sol-gel treatment of metal alkoxides are defined not by kinetic factors in their hydrolysis and polycondensation but by the interactions on the phase boundary, which is in its turn directed by the ligand properties. The products of the fast hydrolysis and condensation sequence consist of micelles templated by self-assembly of ligands (mainly oxo-species). This concept provides explanations for commonly observed material properties and allows for the development of new strategies for the preparation of materials. We discuss the formation of inverted micelles, obtained by the appropriate choice of solvents, which allows for the formation of hollow spheres. The modifying β-diketonate ligands act as the surfactant and form an interface between the hollow sphere and the solvent. Retention of ligands inside the gel particles is possible only if ligands possessing both chelating and bridging properties are applied. Application of such ligands, for example, diethanolamine, permits to prepare new transition metal oxide based microporous membranes.


Sol-gel Chemical modification Gelation mechanism Micelle templated by self-assembly of ligands (MTSAL) Hollow spheres Microporous membrane 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vacassy RJ, Guizard C, Palmeri J, Cot L (1998) Nanostruct Mater 10:77CrossRefGoogle Scholar
  2. 2.
    Xia CR, Cao HQ, Wang H, Yang PH, Meng GY, Peng DK (1999) J Membr Sci 162:181CrossRefGoogle Scholar
  3. 3.
    Kurosawa H, Yan YT, Miura N, Yamazoe N (1995) Solid State Ionics 338:79Google Scholar
  4. 4.
    Riegel J, Neumann H, Wiedemann H-M (2002) Solid State Ionics 783:152–153Google Scholar
  5. 5.
    Miura N, Nakatou M, Zhuiykov S (2003) Sensor Actuat B-Chem 221:93Google Scholar
  6. 6.
    Li YW, He DH, Cheng ZX, Su CL, Li JR, Zhu QM (2001) J Mol Catal A: Chem 267:175Google Scholar
  7. 7.
    Knell A, Barnickel P, Baiker A, Wokaun A (1992) J Catal 306:137Google Scholar
  8. 8.
    Gottmann J, Kreutz EW (1999) Surf Coat Tech 1189:119Google Scholar
  9. 9.
    Reinfield R, (2002) J Alloy Compd 56:341Google Scholar
  10. 10.
    Zhao XY, Vanderbilt D (2002) Phys Rev B Art 65, No. 07510Google Scholar
  11. 11.
    Fiorentini V, Gulleri G (2002) Phys Rev Lett Art 89 No. 266101Google Scholar
  12. 12.
    Livage J, Sanchez C (1992) J Non-Cryst Solids 145:11CrossRefGoogle Scholar
  13. 13.
    Brinker CJ, Sherer GW (1990) Sol-gel science: The physics and chemistry of sol-gel processing, Academic Press, San DiegoGoogle Scholar
  14. 14.
    Swamy KCK, Chandrasekhar V, Harland JJ, Holmes JM, Day RO, Holmes RR (1990) J Amer Chem Soc 112:2341CrossRefGoogle Scholar
  15. 15.
    Veith M, Rammo A (1996) J Organomet Chem 521:429CrossRefGoogle Scholar
  16. 16.
    Donharl W, Elhofer I, Wiede P, Schubert U (1998) J Chem Soc Dalton Trans 1998:2445CrossRefGoogle Scholar
  17. 17.
    Brandhuber D, Torma V, Raab C, Peterlik H, Kulak A, Husing N (2005) J Mater Chem 17:4262CrossRefGoogle Scholar
  18. 18.
    Xu C, Baum TH, Rheingold AL (2004) Inorg Chem 43:1568CrossRefGoogle Scholar
  19. 19.
    Ahn BY, Seok SI, Baek IC, Hong S-I (2006) Chem Commun 2006:189CrossRefGoogle Scholar
  20. 20.
    Harris MT, Singhal A, Look JL, Smith-Kristensen JR, Lin JS, Toth LM (1997) J Sol-Gel Sci Technol 41:8Google Scholar
  21. 21.
    Schubert U, Hüsing N (2000) Synthesis of inorganic materials. Wiley-VCH, WeinheimGoogle Scholar
  22. 22.
    Chisholm MH, Zhou Z (2004) J Mater Chem 14:3081CrossRefGoogle Scholar
  23. 23.
    Fortner KC, Bigi JP, Brown SN (2005) Inorg Chem 44:2803CrossRefGoogle Scholar
  24. 24.
    Fornasieri G, Rozes L, Le Calve S, Alonso B, Massiot D, Rager MN, Evain M, Boubekeur K, Sanchez C (2005) J Am Chem Soc 4869:127Google Scholar
  25. 25.
    Schubert U, Fric H, Abstracts of the 13th International Workshop on Sol-Gel Science and Technology, August 21–26 Los Angeles, USA, 555 (P208).Google Scholar
  26. 26.
    Livage J, Henry M, Sanchez C (1988) Prog Solid St Chem 18:259; Livage J, Henry M (1988) A predictive model for inorganic polymerization reactions. In: Makenzie JD, Ulrich DR (eds) Ultrastructure processing of advanced ceramics. Wiley, New YorkGoogle Scholar
  27. 27.
    Senouci A, Yaakoub M, Huguenard C, Henry M (2004) J Mater Chem 14:3215CrossRefGoogle Scholar
  28. 28.
    Bradley DC, Mehrotra RC, Gaur CP (1978) Metal alkoxides. Academic Press, LondonGoogle Scholar
  29. 29.
    Sanchez C, Ribot F, Toledano P (1991) Chem Mater 3:762CrossRefGoogle Scholar
  30. 30.
    Turova NYa, Turevskaya EP, Kessler VG, Yanovskaya MI (2002) The chemistry of metal alkoxides. Kluwer AP, BostonGoogle Scholar
  31. 31.
    Seisenbaeva GA, Gohil S, Kessler VG (2004) J Mater Chem 14:3177CrossRefGoogle Scholar
  32. 32.
    SHELXTL-NT program manual, Bruker AXS 1998Google Scholar
  33. 33.
    Vaartstra BA, Huffman JC, Gradeff PS, Hubert-Pfalzgraf LG, Daran J-C, Parraud S, Yunlu K, Caulton KG (1990) Inorg Chem 29:3126CrossRefGoogle Scholar
  34. 34.
    Day VW, Klemperer WG, Pafford MM (2001) Inorg Chem 40:5738CrossRefGoogle Scholar
  35. 35.
    Kessler VG (2003) Chem Commun 1213Google Scholar
  36. 36.
    Spijksma GI, Bouwmeester HJM, Blank DHA, Kessler VG (2004) Chem Commun 16:1874CrossRefGoogle Scholar
  37. 37.
    Spijksma GI, Bouwmeester HJM, Blank DHA, Fischer A, Henry M, Kessler VG Inorg Chem (IC 051674 in press)Google Scholar
  38. 38.
    Spijksma GI, Bouwmeester HJM, Blank DHA, Kessler VG (2004) Inorg Chem Comm 7:953CrossRefGoogle Scholar
  39. 39.
    Fleeting KA, O’Brien P, Otway DJ, White AJP, Williams DJ, Jones AC (1999) Inorg Chem 38:1432CrossRefGoogle Scholar
  40. 40.
    Patil U, Winter M, Becker HW, Devi A (2003) J Mater Chem 13:2177CrossRefGoogle Scholar
  41. 41.
    Cambridge Crystallographic Data Centre, Structure No. 269602.Google Scholar
  42. 42.
    Errington RJ, Ridland J, Clegg W, Coxall RA, Sherwood JM (1998) Polyhedron 17:659CrossRefGoogle Scholar
  43. 43.
    Bhakta R, Hipler F, Devi A, Regnery S, Ehrhart P, Waser R (2003) Chem Vap Depos 9:295CrossRefGoogle Scholar
  44. 44.
    Bhakta R, Thomas R, Hipler F, Bettinger HF, Muller J, Ehrhart P, Devi A (2004) J Mater Chem 14:3231CrossRefGoogle Scholar
  45. 45.
    Ridland J (1998) PhD Thesis, University of Newcastle upon TyneGoogle Scholar
  46. 46.
    Blanchard J, Ribot F, Sanchez C, Bellot PV, Trokiner A (2000) J Non-Cryst Solids 265:83CrossRefGoogle Scholar
  47. 47.
    Basolo F, Pearson RG (1973) Mechanisms of inorganic reactions, 2nd ed. Wiley Eastern Private LtdGoogle Scholar
  48. 48.
    Wengrovius JH, Garbauskas MF, Williams EA, Going RC, Donahue PE, Smith JF (1986) J Amer Chem Soc 982:108Google Scholar
  49. 49.
    Schubert U (2004) J Mater Chem 14:3701Google Scholar
  50. 50.
    Blanchard J, Ribot F, Sanchez C, Bellot PV, Trokiner A (2000) J Non-Cryst. Solids 265:83CrossRefGoogle Scholar
  51. 51.
    Brinker CJ, Keefer KD, Schaefer DW, Assink RA, Kay BD, Ashley CS (1984) J Non-Cryst Solids 63:45CrossRefGoogle Scholar
  52. 52.
    Kessler VG (2004) J Sol-Gel Sci Techn 32:11CrossRefGoogle Scholar
  53. 53.
    Percy MJ, Bartlett JR, Woolfrey JL, Spiccia L, West BO (1999) J Mater Chem 9:499CrossRefGoogle Scholar
  54. 54.
    Livage J, Babonneau F, Chatry M, Coury L (1997) Ceram Int 23:13CrossRefGoogle Scholar
  55. 55.
    Cushing BL, Kolesnichenko VL, O’Connor J (2004) Chem Rev 104:3893CrossRefGoogle Scholar
  56. 56.
    Magdassi S, Avnir D, Seri-Levy A, Lapidot N, Rottman C, Sorek Y, Gans O (24 February 2000), Internat. Patent WO 00/9652Google Scholar
  57. 57.
    Chatry M, Henry M, Sanchez C, Livage J (1994) J Sol-gel Sci Technol, 1:233; Werndrup P, Verdenelli M, Chassagneux F, Parola S, Kessler VG (2004), J Mater Chem, 14:344Google Scholar
  58. 58.
    Gainsford GJ, Al-Salim N, Kemmitt T (2002) Acta Crystallogr, Sect E: Struct Rep Online, 58: m636CrossRefGoogle Scholar
  59. 59.
    Spijksma GI, Huiskes C, Benes NE, Kruidhof H, Blank DHA, Kessler V, Bouwmeester HJM, Adv Mater (accepted adma. 200502568)Google Scholar
  60. 60.
    Troitzsch U, Christy AG, Ellis DJ (2004) J Amer Ceram Soc, 87:2058CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Vadim G. Kessler
    • 1
    Email author
  • Gerald I. Spijksma
    • 1
    • 2
  • Gulaim A. Seisenbaeva
    • 1
  • Sebastian Håkansson
    • 3
  • Dave H. A. Blank
    • 2
  • Henny J. M. Bouwmeester
    • 2
  1. 1.Department of ChemistrySLUUppsalaSweden
  2. 2.Inorganic Materials Science, Fac. of Science & Technology, and MESA+ Research Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands
  3. 3.Department of MicrobiologySLUUppsalaSweden

Personalised recommendations