Journal of Sol-Gel Science and Technology

, Volume 40, Issue 1, pp 101–107 | Cite as

Infra red quantum dot photolithography

  • R. R. Gadipalli
  • L. A. Martin
  • B. Heckman
  • J. G. Story
  • M. F. Bertino
  • P. Fraundorf
  • S. Guha
  • N. Leventis
Article

Abstract

CdS quantum dots were fabricated photolithographically on the surface and in the bulk of silica hydrogels, as well as on the surface of planar substrates. Silica hydrogels were prepared with a standard base-catalyzed route, and the solvent was exchanged with a cold aqueous solution of Cd(NO3)2, NH4OH, thiourea, and a capping agent, e.g., 2-mercaptoethanol. The samples were then exposed to a focused infrared beam produced by a continuous-wave Nd:YAG laser. The precursors reacted upon heating, and CdS nanoparticles formed in the illuminated regions. Use of capping agents allowed to control the mean particle size, while focusing of the beam inside hydrogel monoliths generated nanoparticles in their bulk, but not at the surface. Planar substrates were patterned by illuminating a precursor solution spin-coated on the substrates. The average size of the CdS nanoparticles could be varied between about 1.5 and 4.5 nm by varying the type and the concentration of the capping agents.

Keywords

Quantum dots Photolithography Semiconductor nanoparticle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sundar VC, Eisler HJ, Bawendi MG (2002) Adv Mater 14:739CrossRefGoogle Scholar
  2. 2.
    Apoen B, Gacoin T, Nedelec JM, Turrell S, Bouazaoui M (2001) J Mater Sci 36:2565CrossRefGoogle Scholar
  3. 3.
    Tohge N, Asuka M, Minami T (1990) SPIE 1328:125Google Scholar
  4. 4.
    Wallace JM, Rice JK, Pietron JJ, Stroud RM, Long JW, Rolison DR (2003) Nano Lett 3:1463CrossRefGoogle Scholar
  5. 5.
    Fukushima M, Yanagi H, Hayashi S, Suganuma N, Taniguchi Y (2003) Thin Solid Films 438–439:39Google Scholar
  6. 6.
    Maier SA, Friedman MD, Barclay PE, Painter O (2005) Appl Phys Lett 86:1103CrossRefGoogle Scholar
  7. 7.
    Stellacci F, Bauer CA, Meyer-Friedrichsen T, Wenseleers W, Alain V, Kuebler SM, Pond SJK, Zhang Y, Marder SR, Perry WJ (2002) Adv Mater 14:194CrossRefGoogle Scholar
  8. 8.
    Bertino MF, Gadipalli RR, Story JG, Williams CG, Zhang G, Sotiriou-Leventis C, Tokuhiro AT, Guha S, Leventis N (2004) Appl Phys Lett 85:6007CrossRefGoogle Scholar
  9. 9.
    (a) Leventis N, Elder IA, Rolison DR, Anderson ML, Merzbacher CI (1999) Chem Mater 11:2837; (b) Bohannan EW, Gao X, Gaston KR, Doss CD, Sotiriou-Leventis C, Leventis N (2002) Jou Sol-Gel Sci Technol 23:235Google Scholar
  10. 10.
    Kaur I, Pandya DK, Chopra KL (1980) J Electrochem Soc 127:943CrossRefGoogle Scholar
  11. 11.
    Sharma NC, Kainthla RC, Pandya DK, Chopra KL (1979) Thin Solid Films 60:55CrossRefGoogle Scholar
  12. 12.
    Sahu SC, Sahu SN (1993) Thin Solid Films 235:17CrossRefGoogle Scholar
  13. 13.
    Rieke PC, Bentjen SB (1993) Chem Mater 5:43CrossRefGoogle Scholar
  14. 14.
    Kitaev GA, Uritskaya AA, Mokrushin SG (1965) Zhurnal Fizicheskoi Khimii 38:2065Google Scholar
  15. 15.
    Uritskaya AA, Kitaev GA, Belova NS (2002) Russian J Appl Chem 75:846CrossRefGoogle Scholar
  16. 16.
    Rieke PC, Bentjen B (1993) Chem Mater 5:5322CrossRefGoogle Scholar
  17. 17.
    Kaur I, Pandya DK, Chopra KL (1980) J Electrochem Soc 127:943CrossRefGoogle Scholar
  18. 18.
    Bertino MF, Hund JF, Sosa J, Zhang G, Sotiriou-Leventis C, Leventis N, Tokuhiro AT, Terry J (2004) J Non-Cryst Solids 333:108CrossRefGoogle Scholar
  19. 19.
    Nosaka Y (1991) J Phys Chem 95:5054CrossRefGoogle Scholar
  20. 20.
    Lippens PE, Lannoo M (1989) Phys Rev B 39:10935CrossRefGoogle Scholar
  21. 21.
    De Brabander HF, Van Poucke LC (1974) J Coord Chem 3:301; Said FF, Tuck DG (1982) Inorg Chem Acta 59:1Google Scholar
  22. 22.
    Hayes D, Mitit OI, Nenadovit MT, Swayambunathan V, Meisel D (1989) J Phys Chem 93:4603CrossRefGoogle Scholar
  23. 23.
    Gadipalli RR, Martin LA, Story JG, Heckman B, Bertino MF, Leventis N, Fraundorf P, Guha S (in press) Patterning porous matrices and planar substrates with quantum dots. J Sol-Gel Sci TechnolGoogle Scholar
  24. 24.
    Huang J, Sooklal K, Murphy CJ, Ploehn HJ (1999) Chem Mater 11:3595CrossRefGoogle Scholar
  25. 25.
    Green WH, Le KP, Grey J, Au TT, Sailor MJ (1997) Science 276:1826CrossRefGoogle Scholar
  26. 26.
    Bekiari V, Lianos P (1998) Langmuir 14:3459CrossRefGoogle Scholar
  27. 27.
    Canham LT, Loni A, Calcott PDJ, Simons AJ, Reeves C, Houlton MR, Newey JP, Nash KJ, Cox TI (1996) Thin Solid Films 276:112CrossRefGoogle Scholar
  28. 28.
    Sintera JO, Gomeza N, Gatzerta S, Schmidt CE, Korgel BA (2005) Colloids and Surfaces A: Physicochem Eng Aspects 254:147CrossRefGoogle Scholar
  29. 29.
    Rolo AG, Vieira LG, Gomes MJM, Ribeiro JL, Belsley MS, dos Santos MP (1998) Thin Solid Films 312:348CrossRefGoogle Scholar
  30. 30.
    Xu W, Liao Y, Akins DA (2002) J Phys Chem B 106:11127CrossRefGoogle Scholar
  31. 31.
    Kundu M, Khosravi AA, Kulkarni SK, Singh P (1997) J Mater Sci 32:245CrossRefGoogle Scholar
  32. 32.
    Khomane RB, Manna A, Mandale AB, Kulkarni BD (2002) Langmuir 18:8237CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • R. R. Gadipalli
    • 1
  • L. A. Martin
    • 1
  • B. Heckman
    • 1
  • J. G. Story
    • 1
  • M. F. Bertino
    • 1
  • P. Fraundorf
    • 3
  • S. Guha
    • 4
  • N. Leventis
    • 2
  1. 1.Department of PhysicsUniversity of Missouri-RollaUSA
  2. 2.Department of ChemistryUniversity of Missouri-RollaRollaUSA
  3. 3.Department of PhysicsUniversity of Missouri-Saint LouisUSA
  4. 4.Department of PhysicsUniversity of Missouri-ColumbiaColumbiaUSA

Personalised recommendations