Journal of Sol-Gel Science and Technology

, Volume 40, Issue 1, pp 15–23

Synthesis of high surface area nanocrystalline anatase-TiO2 powders derived from particulate sol-gel route by tailoring processing parameters

  • M. R. Mohammadi
  • M. C. Cordero-Cabrera
  • M. Ghorbani
  • D. J. Fray
Article

Abstract

Stabilised titania sols were prepared using an additive free particulate sol-gel route, via electrostatic stabilisation mechanism, with various processing parameters. Peptisation temperature, 50°C and 70°C, and TiO2 concentration, 0.1, 0.2 and 0.4 molar, were chosen as processing parameters during sol preparation. Results from TiO2 particle size and zeta potential of sols revealed that the smallest titania hydrodynamic diameter (13 nm) and the highest zeta potential (47.7 mV) were obtained for the sol produced at the lower peptisation temperature of 50°C and lower TiO2 concentration of 0.1 M. On the other hand, between the sols prepared at 70°C, smaller titania particles (20 nm) and higher zeta potential (46.3 mV) were achieved with increasing TiO2 concentration up to 0.4 M. X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) results of produced powders annealed at different temperatures showed that the 300°C annealed powder made from 0.1 M sol prepared at 50°C was a mixture of anatase and brookite, corresponding to a major phase of anatase (∼95% estimated), with the smallest average crystallite size of 1.3 nm and the highest specific surface area (SSA) of 193 m2/g. Furthermore, increasing TiO2 concentration up to 0.4 molar for the sols prepared at 70°C resulted in decreasing the average crystallite size (1.9 nm at 300°C) and increasing SSA (116 m2/g at 300°C) of the powders annealed at different temperatures. Anatase-to-rutile phase transformation temperature was increased with decreasing peptisation temperature down to 50°C, whereas TiO2 concentration had no effect on this transition. Anatase percentage increased with decreasing both peptisation temperature and TiO2 concentration. Such prepared powders can be used in many applications in areas from photo catalysts to gas sensors.

Keywords

Anatase-TiO2 Sol-gel Processing parameters Characterisation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonini N, Carotta MC, Chiorini A, Guidi V, Malagu C, Martinelli G, Paglialonga L, Sacerdoti M (2000) Sensors Actuators B 68:274CrossRefGoogle Scholar
  2. 2.
    Perera VPS, Jayaweera PVV, Pitigala PKDDP, Andaranayake PKMB, Hastings G, Perera AGU, Tennakone K (2004) Synth Met 143:283CrossRefGoogle Scholar
  3. 3.
    Mao D, Lu G, Chen Q (2004) Applied Catalysis A: General 263:83CrossRefGoogle Scholar
  4. 4.
    Huang Y, Kavan L, Exnar I, Gratzel M (1995) J Electrochem. Society 142:L142CrossRefGoogle Scholar
  5. 5.
    Aliev AE, Shin HW (2002) Displays 23:239CrossRefGoogle Scholar
  6. 6.
    Fretwell R, Douglas P, (2001) Photochem J Photobiol A: Chem 143:229CrossRefGoogle Scholar
  7. 7.
    Tai WP, Oh JH (2002) Sensors and Actuators B 85:154CrossRefGoogle Scholar
  8. 8.
    Francioso L, Presicce DS, Taurino AM, Rella R, Siciliano P, Ficarella A (2003) Sensors Actuators B 95:66CrossRefGoogle Scholar
  9. 9.
    Inagaki M, Nakazawa Y, Hirano M, Kobayashi Y, Toyoda M (2001) J Inorg Mater 3:809CrossRefGoogle Scholar
  10. 10.
    Tanner RE, Liang Y, Altman EI (2002) Surface Science 506:251CrossRefGoogle Scholar
  11. 11.
    Shimizu K, Imai H, Hirashima H, Tsukuma K (1999) Thin Solid Films 351:220CrossRefGoogle Scholar
  12. 12.
    Blesic MD, Saponjic ZV, Nedeljkovic JM, Uskokovic DP (2002) Mater Lett 54:298CrossRefGoogle Scholar
  13. 13.
    Carotta MC, Ferroni M, Gnani D, Guidi V, Merli M, Martinelli G, Casale MC, Notaro M (1999) Sensors Actuators B 58:310CrossRefGoogle Scholar
  14. 14.
    Lee DS, Han SD, Huh JS, Lee DD (1999) Sensors Actuators B 60:57CrossRefGoogle Scholar
  15. 15.
    Ruiz AM, Arbiol J, Cornet A, Shimanoe K, Morante JR, Yamazoe N (2005) Mater Res Soc 828:A4.10.1Google Scholar
  16. 16.
    Liu X, Yang J, Wang L, Yang X, Lu L, Wang X (2000) Mater Sci Engi A 289:241CrossRefGoogle Scholar
  17. 17.
    Devi GS, Hyodo T, Shimizu Y, Egashira M (2002) Sensors Actuators B 87:122CrossRefGoogle Scholar
  18. 18.
    Garzella C, Comini E, Tempesti E, Frigeri C, Sberveglieri G (2000) Sensors Actuators B 68:189CrossRefGoogle Scholar
  19. 19.
    Keshmiri M, Mohseni M, Troczynski T (2004) Applied Catalysis B: Environmental 53:209CrossRefGoogle Scholar
  20. 20.
    Chen W, Zhang J, Fang Q, Li S, Wu J, Li F, Jiang K (2004) Sensors Actuators B 100:195CrossRefGoogle Scholar
  21. 21.
    Miki T, Nishizawa K, Suzuki K, Kato K (2004) Mater Lett 58:2751CrossRefGoogle Scholar
  22. 22.
    Chemseddine A, Moritz T (1999) Eur J Inorg Chem 235Google Scholar
  23. 23.
    Zhang H, Finnegan M, Banfield JF (2001) Nano Letters 1:81CrossRefGoogle Scholar
  24. 24.
    Sivakumar S, Krishna Pillai P, Mukundan P, Warrier KGK (2002) Mater Lett 57:330CrossRefGoogle Scholar
  25. 25.
    Pottier A, Cassaignon S, Chaneac C, Villain F, Tronc E, Jolivet JP (2003) J Mater Chem 13:877CrossRefGoogle Scholar
  26. 26.
    Cordero-Cabrera MC, Walker GS, Grant D (2005) J Mater Sci 40:3709CrossRefGoogle Scholar
  27. 27.
    Spurr R, Myers H (1957) Anal Chem 29:760CrossRefGoogle Scholar
  28. 28.
    Cullity BD (1978) Elements of X-ray diffraction, Addison-Wesley Publishing Company Inc, London, p 99Google Scholar
  29. 29.
    Malvern instruments (2003) DST customer training manual for zeta potential, chapter 6Google Scholar
  30. 30.
    Socrates G (1994) Infrared characteristic group frequencies: Tables and charts, Second Edition John Wiley & Sons, England, p 62/237Google Scholar
  31. 31.
    Ivanova T, Harizanova A, Surtchev M (2002) Mater Lett 55:327CrossRefGoogle Scholar
  32. 32.
    Carp O, Huisman CL, Reller A (2004) Progress in Solid State Chemistry 32:33CrossRefGoogle Scholar
  33. 33.
    Diebold U (2003) Surface Science Reports 48:53CrossRefGoogle Scholar
  34. 34.
    Bokhimi X, Morales A, Pedraza F (2002) J Solid State Chem 169:176CrossRefGoogle Scholar
  35. 35.
    JCPDS PDF-2pattern 73–1764Google Scholar
  36. 36.
    Mohammadi MR, Cordero-Cabrera MC, Fray DJ, Ghorbani M, (2006) In Press in Journal of Sensors Actuators BGoogle Scholar
  37. 37.
    Mohammadi MR, Ghorbani M, Fray DJ (2006) In Press in J Mater Sci TechnGoogle Scholar
  38. 38.
    Mohammadi MR, Ghorbani M, Cordero-Cabrera MC, Fray DJ (2006) In Press in J Mater SciGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • M. R. Mohammadi
    • 1
    • 2
  • M. C. Cordero-Cabrera
    • 1
  • M. Ghorbani
    • 2
  • D. J. Fray
    • 1
  1. 1.Department of Materials Science & MetallurgyUniversity of CambridgeCambridgeUK
  2. 2.Department of Materials Science & Engineering and Institute for Nanoscience & NanotechnologySharif University of TechnologyTehranIran

Personalised recommendations