Journal of Sol-Gel Science and Technology

, Volume 39, Issue 3, pp 299–306 | Cite as

Patterning porous matrices and planar substrates with quantum dots



Silica hydrogels and planar substrates were patterned with CdS nanoparticles using a photolithographic method based on the photo dissociation of thiols and cadmium-thiolate complexes. Silica hydrogels were prepared via a standard base-catalyzed route. The solvent was exchanged with an aqueous solution of CdSO4 and 2-mercaptoethanol, and the samples were then exposed to a focused ultraviolet beam. Planar substrates were patterned by illuminating a precursor solution spin coated on the substrates. CdS nanoparticles formed in the illuminated spots, and had a diameter below about 2 nm. The diameter of the spots illuminated by the UV beam could be varied from a few hundred to a few μm, on both hydrogels and planar substrates. Samples were characterized with transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and optical absorption, photoluminescence and Raman spectroscopies. All these techniques confirmed the chemical identity of the CdS nanoparticles. To investigate the mechanism of nanoparticle formation, we took absorption spectra of the precursor solution as a function of irradiation time. In unirradiated solutions, we noticed a maximum at 250 nm, characteristic of Cd-thiolate complexes. The absorption at 250 nm decreased with increasing irradiation time. A new band appeared at 265 nm for exposures around 5 min, and that band shifted to 290 nm in samples exposed for 10 min. A yellow precipitate formed after about 30 min. XRD showed that the precipitate was cubic CdS, with a mean particle size of 1.4 nm. We attribute formation of CdS to the photodissociation of the thiols and of the Cd-thiolates. UV irradiation of these precursors yields a series of species that can react with Cd2+, such as RS·, S2− and H2S. Small CdS nanoparticles form in the initial stages of illumination, and present absorption bands in the 265–290 nm region. These CdS aggregates grow, coalesce and precipitate for longer irradiation times.


Quantum dots Photolithography Nanocomposites Aerogels 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For example: Evident Technologies, 216 River Street, Suite 200, Troy, New York 12180; Quantum Dot Corp. 26118 Research Road Hayward, CA 94545Google Scholar
  2. 2.
    Sundar VC, Eisler H-J, Bawendi MG (2002) Adv Mater 14:739CrossRefGoogle Scholar
  3. 3.
    Capoen B, Gacoin T, Nedelec JM, Turrell S, Bouazaoui M (2001) J Mater Sci 36:2565CrossRefGoogle Scholar
  4. 4.
    Tohge N, Asuka M, Minami T (1990) SPIE 1328:125Google Scholar
  5. 5.
    Bertino MF, Gadipalli RR, Story JG, Williams CG, Zhang G, Sotiriou-Leventis C, Tokuhiro AT, Guha S, Leventis N (2004) Appl Phys Lett 85:6007CrossRefGoogle Scholar
  6. 6.
    Leventis N, Elder IA, Rolison DR, Anderson ML, Merzbacher CI (1999) Chem Mater 11:2337CrossRefGoogle Scholar
  7. 7.
    Hayes D, Mitit OI, Nenadovit MT, Swayambunathan V, Meisel D (1989) J Phys Chem 93:4603CrossRefGoogle Scholar
  8. 8.
    Mostafavi M, Liu YP, Pernot P, Belloni J (2000) Radiat Phys Chem 59:49CrossRefGoogle Scholar
  9. 9.
    Gaspari G, Granzow A (1970) J Phys Chem 74:836CrossRefGoogle Scholar
  10. 10.
    Knight AR (1974) In: Patai S (ed) The chemistry of the thiol group, Part 1. John Wiley & Sons Ltd., London, Chapter 10Google Scholar
  11. 11.
    De Brabander HF, Van Poucke LC (1974) J Coord Chem 3:301; Said FF, Tuck DG (1982) Inorg Chem Acta 59:1Google Scholar
  12. 12.
    Bao H, Gong Y, Li Z, Gao M (2004) Chem Mater 16:3853CrossRefGoogle Scholar
  13. 13.
    Rosenthal NA, Oster G (1961) J Am Chem Soc 83:4445CrossRefGoogle Scholar
  14. 14.
    Turk T, Resch U, Fox MA, Vogler A (1992) Inorg Chem 31:1854CrossRefGoogle Scholar
  15. 15.
    Turk T, Resch U, Fox MA, Vogler A (1992) J Phys Chem 96:3818CrossRefGoogle Scholar
  16. 16.
    Fischer Ch-H, Henglein A (1989) J Phys Chem 93:5578CrossRefGoogle Scholar
  17. 17.
    Mirkovic T, Hines MA, Nair PS, Scholes GD (2005) Chem Mater 17:3451CrossRefGoogle Scholar
  18. 18.
    Hasegawa Y, Afzaal M, O’Brien P, Wada Y, Yanagida S (2005) Chem Commun 242–243Google Scholar
  19. 19.
    Bertino MF, Hund JF, Sosa J, Zhang G, Sotiriou-Leventis C, Leventis N, Tokuhiro AT, Terry J (2004) J Non-Cryst Solids 333:108CrossRefGoogle Scholar
  20. 20.
    Dance IG, Choy A, Scudder ML (1984) J Am Chem Soc 106:6285CrossRefGoogle Scholar
  21. 21.
    Matsumoto H, Sakata T, Mori H, Yoneyama H (1996) J Phys Chem 100:13781CrossRefGoogle Scholar
  22. 22.
    Nosaka Y (1991) J Phys Chem 95:5054CrossRefGoogle Scholar
  23. 23.
    Lippens PE, Lannoo M (1989) Phys Rev B 39:10935CrossRefGoogle Scholar
  24. 24.
    Huang J, Sooklal K, Murphy CJ, Ploehn HJ (1999) Chem Mater 11:3595CrossRefGoogle Scholar
  25. 25.
    Green WH, Le KP, Grey J, Au TT, Sailor MJ (1997) Science 276:1826CrossRefGoogle Scholar
  26. 26.
    Bekiari V, Lianos P (1998) Langmuir 14:3459CrossRefGoogle Scholar
  27. 27.
    Canham LT, Loni A, Calcott PDJ, Simons AJ, Reeves C, Houlton MR, Newey JP, Nash KJ, Cox TI (1996) Thin Solid Films 276:112CrossRefGoogle Scholar
  28. 28.
    Rolo AG, Vieira LG, Gomes MJM, Ribeiro JL, Belsley MS, dos Santos MP (1998) Thin Solid Films 312:348CrossRefGoogle Scholar
  29. 29.
    Kundu M, Khosravi AA, Kulkarni SK, Singh P (1997) J Mater Sci 32:245CrossRefGoogle Scholar
  30. 30.
    Khomane RB, Manna A, Mandale AB, Kulkarni BD (2002) Langmuir 18:8237CrossRefGoogle Scholar
  31. 31.
    Leventis N, Sotiriou-Leventis C, Zhang G, Rawashdeh A-MM (2002) Nano Lett 2:957CrossRefGoogle Scholar
  32. 32.
    Kaur I, Pandya DK, Chopra KL (1980) J Electrochem Soc 127:943CrossRefGoogle Scholar
  33. 33.
    Sharma NC, Kainthla RC, Pandya DK, Chopra KL (1979) Thin Solid Films 60:55CrossRefGoogle Scholar
  34. 34.
    Kitaev GA, Uritskaya AA, Mokrushin SG (1965) Zhurnal Fizicheskoi Khimii 38:2065Google Scholar
  35. 35.
    Bertino MF, Gadipalli RR, Martin LA, Heckman B, Story JG, Leventis N, Fraundorf P, Guha S, to be submitted to J Sol-Gel Sci Technol, in pressGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • M. F. Bertino
    • 1
  • R. R. Gadipalli
    • 1
  • L. A. Martin
    • 1
  • J. G. Story
    • 1
  • B. Heckman
    • 1
  • S. Guha
    • 2
  • N. Leventis
    • 3
    • 4
  1. 1.Department of PhysicsUniversity of Missouri-RollaUSA
  2. 2.Department of PhysicsUniversity of Missouri-ColumbiaColumbiaUSA
  3. 3.Materials Division/Polymers BranchNASA Glenn Research CenterCleveland
  4. 4.Department of ChemistryUniversity of Missouri-RollaUSA

Personalised recommendations