Journal of Sol-Gel Science and Technology

, Volume 40, Issue 2–3, pp 351–357

Aerogel: Space exploration applications

Aerogels

Abstract

The unique physical properties of aerogel have proven to be enabling to a variety of both flight and proposed space exploration missions. The extremely low density and highly porous nature of aerogel makes it suitable for stopping high velocity particles, as a highly efficient thermal barrier, and as a porous medium for the containment of cryogenic fluids. The use of silica aerogel as a hypervelocity particle capture and return media for the Stardust Mission has drawn the attention of many in the space exploration community. Aerogel is currently being used as the thermal insulation material in the 2003 Mars Exploration Rovers. The SCIM (Sample Collection for the Investigation of Mars) and the STEP (Satellite Test of the Equivalence Principle) Missions are both proposed space exploration missions, in which, the use of aerogel is critical to their overall design and success. Composite materials comprised of silica aerogel and oxide powders are under development for use in a new generation of thermoelectric devices that are planned for use in many future space exploration mission designs. Work is currently ongoing in the development and production of non-silicate and composite aerogels to extend the range of useful applications envisioned for aerogel in future space exploration projects.

Keywords

Aerogel Aerogel applications Space exploration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brinker CJ, Scherer GW (1990) Sol-gel science: The physics and chemistry of sol-gel processing. Academic Press, San DiegoGoogle Scholar
  2. 2.
    Livage J, Sanchez C (1990) J Non-Cryst Solids 145:11CrossRefGoogle Scholar
  3. 3.
    Hench LL, West JK (1990) Chem Rev 90(1):33CrossRefGoogle Scholar
  4. 4.
    Herrmann G, Iden R, Mielke M, Teich F, Ziegler B (1995) J Non-Cryst Solids 186:380CrossRefGoogle Scholar
  5. 5.
    Hrubesh LW (1998) J Non-Cryst Solids 225:335CrossRefGoogle Scholar
  6. 6.
    Schmidt M, Schwertfeger F (1998) J Non-Cryst Solids 225:364CrossRefGoogle Scholar
  7. 7.
    Ulrich DR (1990) J Non-Cryst Solids 121:465CrossRefGoogle Scholar
  8. 8.
    Fricke J, Tillotson T (1997) Thin Solid Films 297:212CrossRefGoogle Scholar
  9. 9.
    MacKenzie JD (1988) J Non-Cryst Solids 100:162CrossRefGoogle Scholar
  10. 10.
    Pierre AC, Pajonk GM (2002) Chem Rev 102:4243CrossRefGoogle Scholar
  11. 11.
    Adachi I, Sumiyoshi T, Hayashi K, Iida N, Enomoto R, Tsukada K, Suda R, Matsumoto S, Natori K, Yokoyama M, Yokogawa H (1995) Nucl Instr Meth Phys Res A 355:390CrossRefGoogle Scholar
  12. 12.
    Asner D, Butler F, Dominick J, Fadeyev V, Masek G, Nemati B, Skubic P, Strynowski R (1996) Nucl Instr Meth Phys Res A 374:286CrossRefGoogle Scholar
  13. 13.
    Sumiyoshi T, Adachi I, Enomotoi R, Iijima T, Suda R, Yokoyama M, Yokogawa H (1998) J Non-Cryst Solids 225:369CrossRefGoogle Scholar
  14. 14.
    Ishino M, Chiba J, En’yo H, Funahashi H, Ichikawa A, Ieiri M, Kanda H, Masaike A, Mihara S, Miyashita T, Murakami T, Nakamura A, Naruki M, Muto R, Ozawa K, Sato HD, Sekimoto M, Tabaru T, Tanaka KH, Yoshimura Y, Yokkaichi S, Yokoyama M, Yokgawa H (2001) Nucl Instr Meth Phys Res A 457:581CrossRefGoogle Scholar
  15. 15.
    DeLeo R, Lagamba L, Manzari V, Nappi E, Scognetti T, Alemi M, Becker H, Forty R, Adachi I, Suda R, Sumiyoshi T, Leone A, Perrino R, Matteuzzi C, Seguinot J, Ypsilantis T, Cisbani E, Frullani S, Garibaldi F, Iodice M, Uriuoli GM (1997) Nucl Instr Meth Phys Res A 401:187CrossRefGoogle Scholar
  16. 16.
    Tsou P (1995) J Non-Cryst Solids 186:415CrossRefGoogle Scholar
  17. 17.
    Brownlee DB, Tsou P, Atkins KL, Yen C-W, Vellinga JM, Price S, Clark BC (1996) Acta Astronautic 39(1–4):51CrossRefGoogle Scholar
  18. 18.
    Tillotson TM, Hrubesh LW (1992) J Non-Cryst Solids 145:44CrossRefGoogle Scholar
  19. 19.
    Leshin LA, Yen A, Bomba J, Clarke B, Epp C, Fourney L, Gamber T, Graves C, Hupp J, Jones S, Jurewicz JAG, Oakman K, Rea J, Richardson M, Romeo K, Sharp T, Sutter B, Thiemens M, Thornton J, Vicker D, Willcockson W, Zolensky M (2002) Sample collection for investigation of mars (SCIM): An early mars sample return mission through the mars scout program (Abstract), Lunar Planetary Sci Conf XXXIII, Lunar Planetary Institute, Houston, TXGoogle Scholar
  20. 20.
    Leshin LA, Clark BC, Forney L, Jones SM, Jurewicz AJG, Greeley R, McSween HY, Richardson M, Sharp T, Thiemens M, Wadhwa M, Wiens RC, Yen A, Zolensky M (2003) Scientific Benefit of a mars dust sample capture and earth return with SCIM (Abstract), Lunar Planetary Sci Conf XXXIV, Lunar Planetary Institute, Houston, TXGoogle Scholar
  21. 21.
    Jurewicz AJG, Forney L, Bomba J, Vicker D, Jones S, Yen A, Clark B, Gamber T, Leshin LA, Richardson M, Sharpe T, Thiemens M, Thornton JM, Zolensky M (2002) Investigating the use of aerogel collectors for the SCIM Martian dust sample return (Abstract), Lunar Planetary Sci Conf XXXIII, Lunar Planetary Institute, Houston, TXGoogle Scholar
  22. 22.
    Novak KS, Phillips CJ, Burir GC, Sunada ET, Pauken MT (Feb. 2–6, 2003) Technology applications international forum 2003. Albuquerque, NMGoogle Scholar
  23. 23.
    Lange RG, Mastal EF (1994) In: El-Genk MS (ed) A critical review of space nuclear power and propulsion 1984–1993. American Institute of Physics Press, New York, p 1Google Scholar
  24. 24.
    Wang S, Torii R, Vitale S (2001) Classical Quantum Gravity 18:2551CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadena

Personalised recommendations