Journal of Sol-Gel Science and Technology

, Volume 38, Issue 2, pp 121–131 | Cite as

Alternative synthesis of poly(hydroxymethylsiloxane) for lipase immobilization and use of the adsorbates as esterification biocatalysts

  • J. Hetflejs
  • G. KuncovaEmail author
  • S. Sabata
  • V. Blechta
  • J. Brus


A medium molar mass poly(hydrogenomethyl- siloxane), Me3Si(O-SiHMe)nOSiMe3, (PHMS), has been used for preparing poly(hydroxymethylsiloxane) supports (PHOMS) for lipase immobilization. The procedure involved the conversion of PHMS to the corresponding poly(alkoxymethylsiloxanes). Me3Si(OSi(OR) Me/nOSiMe3 (PHMS), their alkaline hydrolysis to form poly(siloxanolates) which were then converted to PHOMS by neutralization. The effect of different catalysts and alcohols (methanol, ethanol, 2-propanol) on the course of poly(alkoxymethylsiloxanes) formation is reported. PHOMS supports were characterized by BET and Hg porosimetry, and the degree of their crosslinking was determined by solid-phase NMR. Fluorescence spectroscopy was used to assess surface polarity and determine lipase loading. The efficiency of lipase adsorbed on these supports was tested in the esterification of stearic acid with propanol in hexane. It was found that the activity of the adsorbates is controlled by their porosity. The addition of an inert addend (e.g. hydrotalcite) in the step of alkaline hydrolysis of poly(alkoxymethylsiloxanes) increases the adsorption efficiency of the supports as compared to PHOMS. The potential application of the biocatalysts, lipase-PHOMS adsorbates, was extended by their encapsulation into a RTV silicone rubber containing Si-substituted poly(imide) as a swelling modifier.


Lipase Poly(hydroxymethylsiloxane) Esterification biocatalyst Organic-inorganic matrices Silicon rubber encapsulates 113C and 29Si NMR spectra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.T. Reetz, Curr. Opin. Chern. Biol. 6, 145 (2002).CrossRefGoogle Scholar
  2. 2.
    U.T. Bornscheuer and R.J. Kazlauskas, Hydrolases in Organic Synthesis. Regio and Stereoselective Biotransformations. (Wiley VCH, Weinheim, 1999).Google Scholar
  3. 3.
    K. Mori, SYNLETT 1995, 1097.Google Scholar
  4. 4.
    W. Jin and J.D. Brennan, Anal. Chim. Acta 461, 1 (2002).CrossRefGoogle Scholar
  5. 5.
    J.D. Brennan, J.S. Hartman, E.I. Ilnicki, and M. Rakic, Chem. Mater. 11, 1853 (1999).CrossRefGoogle Scholar
  6. 6.
    G. Kuncova, Y. Maleterova, and P. Lovecka, Biotechnol. Tech. 8, 533 (1994).Google Scholar
  7. 7.
    G. Kuncova, M. Gugliemi, P. Dubina, and B. Safar, Collect. Czech. Chem. Commun. 60, 73 (1995).Google Scholar
  8. 8.
    G. Kuncova and M. Sivel, J. Sol-Gel Sci. Tech. 8, 667 (1997).CrossRefGoogle Scholar
  9. 9.
    R. Fernandez-Lafuente, P. Armisen, P. Sabuquillo, G. Fernandez-Lafuente, and J.M. Guisan, Chem Phys. Lipids 93, 185 (1998).CrossRefGoogle Scholar
  10. 10.
    S.S. Betigeri and S.H. Neau, Biomaterials 23, 3627 (2002).CrossRefGoogle Scholar
  11. 11.
    S. Maury, P. Buisson, A. Perrard, and A.C. Pierre, J. Molecular Catal. B: Enzymatic 32, 193 (2005).CrossRefGoogle Scholar
  12. 12.
    M.T. Reetz, A. Zonta, J. Simpelkamp, A. Rufinska, and B. Tesche, J. Sol-Gel Sci. Tech. 7, 35 (1996).CrossRefGoogle Scholar
  13. 13.
    P. Buisson, H.E.L. Rassy, S. Maury, and A.C. Pierre, J. Sol-Gel Sci. Tech. 27, 373 (2003).CrossRefGoogle Scholar
  14. 14.
    M.T. Reetz, P. Tielmann, W. Wiesenhoefer, W. Koenen, and A. Zonta, Adv. Synth. Catal. 345, 717 (2003).CrossRefGoogle Scholar
  15. 15.
    G. Kuncova, J. Hetflejs, J. Szilva, and S. Sabata, Landbauforschung Volkenrode, Sonderheft 241, 41 (2002).Google Scholar
  16. 16.
    G. Kuncova, J. Szilva, J. Hetflejs, and S. Sabata, J. Sol-Gel Sci. Technol. 26, 1183, (2003).CrossRefGoogle Scholar
  17. 17.
    I. Gill, E. Pastor, and A. Ballesteros, J. Am. Chem. Soc. 121, 9487 (1999).CrossRefGoogle Scholar
  18. 18.
    H. Mimoun, J. Org. Chem. 64, 2581 (1999).Google Scholar
  19. 19.
    J. Hetflejs, F. Mares, and V. Chvalovsky, Collect. Czech. Chem. Commun. 30, 1643 (1965).Google Scholar
  20. 20.
    S. Lu, M.M. Melo, J. Zhao, E.M. Pearce, and T.K. Kwei, Macromolecules 28, 4908 (1995).CrossRefGoogle Scholar
  21. 21.
    N.J. Lawrence and M.D. Bushell, J. Chem. Soc. Perkin Trans. 1, 3381 (1999).Google Scholar
  22. 22.
    S. Chandrasekar, Y.R. Reddy, and C. Ramao, Synt. Commun. 27, 2551 (1997).Google Scholar
  23. 23.
    V. Bazant, V. Chvalovsky and J. Rathousky, Organosilicon Compounds, (Academia, Prague 1977), Vol. 1.Google Scholar
  24. 24.
    J. Brus and J. Dybal, Macromolecules 35, 10038 (2002).CrossRefGoogle Scholar
  25. 25.
    J.F. Deye and T.A. Berger, Anal. Chem. 62, 615 (1990).CrossRefGoogle Scholar
  26. 26.
    P. Greenspan and S.D. Fowler, J. Lipid Research 26, 781 (1985).Google Scholar
  27. 27.
    G. Hungerford and J.A. Ferreira, J. Luminiscence 93, 155 (2001).CrossRefGoogle Scholar
  28. 28.
    A. Lobnik and O.S. Wolbeis, J. Sol-Gel Sci. Tech. 20, 301 (2001).CrossRefGoogle Scholar
  29. 29.
    E.M. Moreno and D. Levy, Chem. Mater. 12, 2334 (2000).CrossRefGoogle Scholar
  30. 30.
    M.M. Bradford, Anal. Biochem. 72, 248 (1976).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • J. Hetflejs
    • 1
  • G. Kuncova
    • 1
    Email author
  • S. Sabata
    • 1
  • V. Blechta
    • 1
  • J. Brus
    • 2
  1. 1.Institute of Chemical Process Fundamentals ASCRPraha 6-Suchdol, Rozvojova 135Czech Republic
  2. 2.Institute of Macromolecular Chemistry ASCRPraha 6Czech Republic

Personalised recommendations