Journal of Sol-Gel Science and Technology

, Volume 40, Issue 2–3, pp 259–266 | Cite as

Nonaqueous synthesis of metal oxide nanoparticles:Review and indium oxide as case study for the dependence of particle morphology on precursors and solvents

  • Markus Niederberger
  • Georg Garnweitner
  • Jelena Buha
  • Julien Polleux
  • Jianhua Ba
  • Nicola Pinna
Nanomaterials and Thin Films

Abstract

Nonaqueous solution routes to metal oxide nanoparticles are a valuable alternative to the well-known aqueous sol-gel processes, offering advantages such as high crystallinity at low temperatures, robust synthesis parameters and ability to control the crystal growth without the use of surfactants. In the first part of the review, we give an overview of the various nonaqueous routes to metal oxides, their surface functionalization and their assembly into well-defined nanostructures. However, we will strongly focus on surfactant-free processes developed in our group. Within the various reaction systems such as metal halides—benzyl alcohol, metal alkoxides—benzyl alcohol, metal alkoxides—ketones, metal acetylacetonates—benzyl alcohol and metal acetylacetonates—benzylamine we will discuss representative examples in order to show the versatility of this approach. The careful characterization of the organic species in the final reaction mixtures provides information about possible condensation mechanisms. Depending on the system several reaction pathways have been postulated: (i) elimination of organic ethers as result of condensation between two metal alkoxide precursors; (ii) C–C bond formation between the alkoxy ligand of the metal alkoxide precursor and the solvent benzyl alcohol under formation of a metal hydroxyl species, which can undergo further condensation; (iii) ketimine and aldol-like condensation steps, which in the metal acetylacetonate systems are preceded by a solvolysis of the precursor, involving C–C bond cleavage.

In the second part of the paper we will focus on the synthesis of indium oxide nanoparticles using different precursors and solvents. Indium oxide represents an instructive example how the oxide precursors and the solvents influence the particle morphology. These findings make it possible to tailor particle size and shape of a particular metal oxide by the appropriate choice of the reaction system.

Keywords

Nonaqueous synthesis Nonhydrolytic process Metal oxides Indium oxide Nanoparticles Formation mechanism Nanoparticle assembly 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Henglein, Chem. Rev. 89, 1861 (1989).CrossRefGoogle Scholar
  2. 2.
    A.P. Alivisatos, J. Phys. Chem. 100, 13226 (1996).CrossRefGoogle Scholar
  3. 3.
    C. Burda, X. Chen, R. Narayanan, and M.A. El-Sayed, Chem. Rev. 105, 1025 (2005).CrossRefGoogle Scholar
  4. 4.
    J. Livage, M. Henry, and C. Sanchez, Prog. Solid State Chem. 18, 259 (1988).CrossRefGoogle Scholar
  5. 5.
    L.L. Hench and J.K. West, Chem. Rev. 90, 33 (1990).CrossRefGoogle Scholar
  6. 6.
    B.L. Cushing, V.L. Kolesnichenko, and C.J. O’Connor, Chem. Rev. 104, 3893 (2004).CrossRefGoogle Scholar
  7. 7.
    E. Matijevic, Chem. Mater. 5, 412 (1993).CrossRefGoogle Scholar
  8. 8.
    A.W. Dearing and E.E. Reid, J. Am. Chem. Soc. 50, 3058 (1928).CrossRefGoogle Scholar
  9. 9.
    D. Ridge and M. Todd, J. Chem. Soc. 2637 (1949).Google Scholar
  10. 10.
    W. Gerrard and A.H. Woodhead, J. Chem. Soc. 519 (1951).Google Scholar
  11. 11.
    W. Gerrard and K.D. Kilburn, J. Chem. Soc. 1536, (1956).Google Scholar
  12. 12.
    R.J.P. Corriu, D. Leclercq, P. Lefevre, P.H. Mutin, and A. Vioux, J. Non-Cryst. Solids 146, 301 (1992).CrossRefGoogle Scholar
  13. 13.
    R.J.P. Corriu, D. Leclercq, P. Lefevre, P.H. Mutin, and A. Vioux, J. Mater. Chem. 2, 673 (1992).CrossRefGoogle Scholar
  14. 14.
    S. Acosta, P. Arnal, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, Mater. Res. Soc. Symp. Proc. 346, 43 (1994).Google Scholar
  15. 15.
    P. Arnal, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, Mater. Res. Soc. Symp. Proc. 346, 339 (1994).Google Scholar
  16. 16.
    P. Arnal, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, J. Mater. Chem. 6, 1925 (1996).CrossRefGoogle Scholar
  17. 17.
    P. Arnal, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, Chem. Mater. 9, 694 (1997).CrossRefGoogle Scholar
  18. 18.
    S.C. Goel, M.Y. Chiang, P.C. Gibbons, and W.E. Buhro, Mater. Res. Soc. Symp. Proc. 271, 3 (1992).Google Scholar
  19. 19.
    T.J. Trentler, T.E. Denler, J.F. Bertone, A. Agrawal, and V.L. Colvin, J. Am. Chem. Soc. 121, 1613 (1999).CrossRefGoogle Scholar
  20. 20.
    M. Ivanda, S. Music, S. Popovic, and M. Gotic, J. Mol. Struct. 481, 645 (1999).CrossRefGoogle Scholar
  21. 21.
    T. Hyeon, Chem. Commun. 927, (2003).Google Scholar
  22. 22.
    M. Niederberger, G. Garnweitner, N. Pinna, and G. Neri, Prog. Solid State Chem. (in print), DOI:10.1016/j.progsolidstchem. 2005.11.032.Google Scholar
  23. 23.
    C.S. Kim, B.K. Moon, J.H. Park, B.C. Choi, and H.J. Seo, J. Cryst. Growth 257, 309 (2003).CrossRefGoogle Scholar
  24. 24.
    P.D. Cozzoli, A. Kornowski, and H. Weller, J. Am. Chem. Soc. 125, 14539 (2003).CrossRefGoogle Scholar
  25. 25.
    Y.W. Jun, M.F. Casula, J.H. Sim, S.Y. Kim, J. Cheon, and A.P. Alivisatos, J. Am. Chem. Soc. 125, 15981 (2003).CrossRefGoogle Scholar
  26. 26.
    J. Tang, F. Redl, Y. Zhu, T. Siegrist, L.E. Brus, and M.L. Steigerwald, Nano Lett. 5, 543 (2005).CrossRefGoogle Scholar
  27. 27.
    Z. Zhang, X. Zhong, S. Liu, D. Li, and M. Han, Angew. Chem. Int. Ed. 44, 3466 (2005).CrossRefGoogle Scholar
  28. 28.
    J. Rockenberger, E.C. Scher, and A.P. Alivisatos, J. Am. Chem. Soc. 121, 11596 (1999).CrossRefGoogle Scholar
  29. 29.
    T. Hyeon, S.S. Lee, J. Park, Y. Chung, and H.B. Na, J. Am. Chem. Soc. 123, 12798 (2001).CrossRefGoogle Scholar
  30. 30.
    S.H. Sun, and H. Zeng, J. Am. Chem. Soc. 124, 8204 (2002).CrossRefGoogle Scholar
  31. 31.
    F.X. Redl, C.T. Black, G.C. Papaefthymiou, R.L. Sandstrom, M. Yin, H. Zeng, C.B. Murray, and S.P. O’Brien, J. Am. Chem. Soc. 126, 14583 (2004).CrossRefGoogle Scholar
  32. 32.
    J. Cheon, N.J. Kang, S.M. Lee, J.H. Lee, J.H. Yoon, and S.J. Oh, J. Am. Chem. Soc. 126, 1950 (2004).CrossRefGoogle Scholar
  33. 33.
    J. Park, E. Lee, N.-M. Hwang, M. Kang, S.C. Kim, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, and T. Hyeon, Angew. Chem. Int. Ed. 44, 2872 (2005).CrossRefGoogle Scholar
  34. 34.
    W.S. Seo, H.H. Jo, K. Lee, B. Kim, S.J. Oh, and J.T. Park, Angew. Chem. Int. Ed. 43, 1115 (2004).CrossRefGoogle Scholar
  35. 35.
    D. Zitoun, N. Pinna, N. Frolet, and C. Belin, J. Am. Chem. Soc. 127, 15034 (2005).CrossRefGoogle Scholar
  36. 36.
    J.-W. Seo, Y.-W. Jun, S.J. Ko, and J. Cheon, J. Phys. Chem. B 109, 5389 (2005).CrossRefGoogle Scholar
  37. 37.
    X. Sun, Y.W. Zhang, R. Si, and C.H. Yan, Small 1, 1081 (2005).CrossRefGoogle Scholar
  38. 38.
    T. Yu, J. Joo, J. Park, and T. Hyeon, Angew. Chem. Int. Ed. 44, 7411 (2005).CrossRefGoogle Scholar
  39. 39.
    M. Yin, C.K. Wu, Y. Lou, C. Burda, J.T. Koberstein, Y. Zhu, and S. O’Brien, J. Am. Chem. Soc. 127, 9506 (2005).CrossRefGoogle Scholar
  40. 40.
    N.R. Jana, Y. Chen, and X. Peng, Chem. Mater. 16, 3931 (2004).CrossRefGoogle Scholar
  41. 41.
    T. He, D. Chen, X. Jiao, Y. Wang, and Y. Duan, Chem. Mater. 17, 4023 (2005).CrossRefGoogle Scholar
  42. 42.
    J. Park, E. Kang, S.U. Son, H.M. Park, M.K. Lee, J. Kim, K.W. Kim, H.-J. Noh, J.-H. Park, C.J. Bae, J.-G. Park, and T. Hyeon, Adv. Mater. 17, 429 (2005).CrossRefGoogle Scholar
  43. 43.
    J. Joo, T. Yu, Y.W. Kim, H.M. Park, F.X. Wu, J.Z. Zhang, and T. Hyeon, J. Am. Chem. Soc. 125, 6553 (2003).CrossRefGoogle Scholar
  44. 44.
    J. Tang, F. Zhang, P. Zoogman, J. Fabbri, S.W. Chan, Y. Zhu, L.E. Brus, and M.L. Steigerwald, Adv. Funct. Mater. 15, 1595 (2005).CrossRefGoogle Scholar
  45. 45.
    J. Tang, J. Fabbri, R.D. Robinson, Y.M. Zhu, I.P. Herman, M.L. Steigerwald, and L.E. Brus, Chem. Mater. 16, 1336 (2004).CrossRefGoogle Scholar
  46. 46.
    M. Shim and P. Guyot-Sionnest, J. Am. Chem. Soc. 123, 11651 (2001).CrossRefGoogle Scholar
  47. 47.
    P.D. Cozzoli, M.L. Curri, A. Agostiano, G. Leo, and M. Lomascolo, J. Phys. Chem. B 107, 4756 (2003).CrossRefGoogle Scholar
  48. 48.
    J. Joo, S.G. Kwon, J.H. Yu, and T. Hyeon, Adv. Mater. 17, 1873 (2005).CrossRefGoogle Scholar
  49. 49.
    W.S. Seo, H.H. Jo, K. Lee, and J.T. Park, Adv. Mater. 15, 795 (2003).CrossRefGoogle Scholar
  50. 50.
    Q. Liu, W. Lu, A. Ma, J. Tang, J. Lin, and J. Fang, J. Am. Chem. Soc. 127, 5276 (2005).CrossRefGoogle Scholar
  51. 51.
    K. Lee, W.S. Seo, and J.T. Park, J. Am. Chem. Soc. 125, 3408 (2003).CrossRefGoogle Scholar
  52. 52.
    K. Woo, J. Hong, J.P. Ahn, J.K. Park, and K.J. Kim, Inorg. Chem. 44, 7171 (2005).CrossRefGoogle Scholar
  53. 53.
    Q. Song and Z.J. Zhang, J. Am. Chem. Soc. 126, 6164 (200).CrossRefGoogle Scholar
  54. 54.
    S.H. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, and G.X. Li, J. Am. Chem. Soc. 126, 273 (2004).Google Scholar
  55. 55.
    J. Park, K. An, Y. Hwang, J.G. Park, H.J. Noh, J.Y. Kim, J.H. Park, N.M. Hwang, and T. Hyeon, Nat. Mater. 3, 891 (2004).CrossRefGoogle Scholar
  56. 56.
    A. Hoshino, K. Fujioka, T. Oku, M. Suga, Y.F. Sasaki, T. Ohta, M. Yasuhara, K. Suzuki, and K. Yamamoto, Nano Lett. 4, 2163 (2004).CrossRefGoogle Scholar
  57. 57.
    M. Niederberger, M.H. Bartl, and G.D. Stucky, Chem. Mater. 14, 4364 (2002).CrossRefGoogle Scholar
  58. 58.
    M. Niederberger, M.H. Bartl, and G.D. Stucky, J. Am. Chem. Soc. 124, 13642 (2002).CrossRefGoogle Scholar
  59. 59.
    J. Ba, J. Polleux, M. Antonietti, and M. Niederberger, Adv. Mater. 17, 2509 (2005).CrossRefGoogle Scholar
  60. 60.
    J. Polleux, N. Pinna, M. Antonietti, and M. Niederberger, J. Am. Chem. Soc. 127, 15595 (2005).CrossRefGoogle Scholar
  61. 61.
    M. Niederberger, G. Garnweitner, F. Krumeich, R. Nesper, H. Cölfen, and M. Antonietti, Chem. Mater. 16, 1202 (2004).CrossRefGoogle Scholar
  62. 62.
    J. Polleux, N. Pinna, M. Antonietti, and M. Niederberger, Adv. Mater. 16, 436 (2004).CrossRefGoogle Scholar
  63. 63.
    J. Polleux, N. Pinna, M. Antonietti, C. Hess, U. Wild, R. Schlögl, and M. Niederberger, Chem. Eur. J. 11, 3541 (2005).CrossRefGoogle Scholar
  64. 64.
    R.L. Penn and J.F. Banfield, Am. Mineral. 83, 1077 (1998).Google Scholar
  65. 65.
    A.S. Deshpande, N. Pinna, P. Beato, M. Antonietti, and M. Niederberger, Chem. Mater. 16, 2599 (2004).CrossRefGoogle Scholar
  66. 66.
    A.S. Deshpande, N. Pinna, B. Smarsly, M. Antonietti, and M. Niederberger, Small 1, 313 (2005).CrossRefGoogle Scholar
  67. 67.
    N. Pinna, M. Antonietti, and M. Niederberger, Colloids Surf. A 250, 211 (2004).CrossRefGoogle Scholar
  68. 68.
    N. Pinna, G. Garnweitner, M. Antonietti, and M. Niederberger, Adv. Mater. 16, 2196 (2004).CrossRefGoogle Scholar
  69. 69.
    N. Pinna, G. Neri, M. Antonietti, and M. Niederberger, Angew. Chem. Int. Ed. 43, 4345 (2004).CrossRefGoogle Scholar
  70. 70.
    M. Niederberger, N. Pinna, J. Polleux, and M. Antonietti, Angew. Chem. Int. Ed. 43, 2270 (2004).CrossRefGoogle Scholar
  71. 71.
    M. Niederberger, G. Garnweitner, N. Pinna, and M. Antonietti, J. Am. Chem. Soc. 126, 9120 (2004).CrossRefGoogle Scholar
  72. 72.
    N. Pinna, G. Garnweitner, P. Beato, M. Niederberger, and M. Antonietti, Small 1, 112 (2005).CrossRefGoogle Scholar
  73. 73.
    J. Polleux, A. Gurlo, M. Antonietti, and M. Niederberger, Angew. Chem. Int. Ed. 45, 261 (2006).Google Scholar
  74. 74.
    G. Garnweitner, M. Antonietti, and M. Niederberger, Chem. Commun. 397 (2004).Google Scholar
  75. 75.
    G. Garnweitner, J. Hentschel, M. Antonietti, and M. Niederberger, Chem. Mater. 17, 4594 (2005).CrossRefGoogle Scholar
  76. 76.
    N. Pinna, S. Grancharov, P. Beato, P. Bonville, M. Antonietti, and M. Niederberger, Chem. Mater. 17, 3044 (2005).CrossRefGoogle Scholar
  77. 77.
    N. Pinna, G. Garnweitner, M. Antonietti, and M. Niederberger, J. Am. Chem. Soc. 127, 5608 (2005).CrossRefGoogle Scholar
  78. 78.
    A. Vioux, Chem. Mater. 9, 2292 (1997).CrossRefGoogle Scholar
  79. 79.
    J.N. Hay and H.M. Raval, Chem. Mater. 13, 3396 (2001).CrossRefGoogle Scholar
  80. 80.
    N.Y. Turova, V.G. Kessler, and S.I. Kucheiko, Polyhedron 10, 2617 (1991).CrossRefGoogle Scholar
  81. 81.
    V.G. Kessler, K.V. Nikitin, and A.I. Belokon, Polyhedron 17, 2309 (1998).CrossRefGoogle Scholar
  82. 82.
    G. Eranna, B.C. Joshi, D.P. Runthala, and R.P. Gupta, Crit. Rev. Solid State Mater. Sci. 29, 111 (2004).CrossRefGoogle Scholar
  83. 83.
    G. Neri, A. Bonavita, G. Micali, G. Rizzo, S. Galvagno, M. Niederberger, and N. Pinna, Chem. Commun. 6032 (2005).Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Markus Niederberger
    • 1
  • Georg Garnweitner
    • 1
  • Jelena Buha
    • 1
  • Julien Polleux
    • 1
  • Jianhua Ba
    • 1
  • Nicola Pinna
    • 2
  1. 1.Max Planck Institute of Colloids and InterfacesColloid ChemistryPotsdamGermany
  2. 2.Martin-Luther-Universität Halle-WittenbergInstitut für Anorganische ChemieHalle (Saale)Germany

Personalised recommendations