Journal of Sol-Gel Science and Technology

, Volume 38, Issue 1, pp 47–53

Low-temperature synthesis of photocatalytic TiO2 thin film from aqueous anatase precursor sols



Anatase TiO2 sols (RS) were synthesized by peptizing the hydrolysis of titanyl sulfate in abundant hydrogen peroxide solution and subsequent reflux to enhance crystallization. The influences of various reflux time on crystallinity, morphology, and size of the obtained TiO2 sol and dried TiO2 film particles were investigated. At room temperature, crystalline TiO2 thin film was deposited on glass silde from the as prepared TiO2 sol by dip-coating method. No further thermal posttreatment was required to eliminate organics from the film or to induce titania crystallization. TiO2 thin film on substrates could be thickened by means of consecutive dip-coating process. Titania film thus obtained was transparent and showed proper adherence. The photocatalytic activities of the TiO2 thin film was assessed by the degradation of methyl orange in aqueous solution. The preparation process of photocatalytic TiO2 thin film was quite simple and a low-temperature route.


Anatas TiO2 sols Refluxed sol Peroxo titanic acid TiO2 thin film Photocatalysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.W. Thomapson, C.A. Kelli, F. Farzad, and G. Mryer, Langmuir 15, 650 (1999).CrossRefGoogle Scholar
  2. 2.
    E.L. Crepaldi, G.J.A.A Soler-Illia, D. Crosso, F. Cagnol, F. Ribot, and A. Sanchez, J. Am Chem. Soc. 125, 9770 (2003).CrossRefGoogle Scholar
  3. 3.
    G. Subramania, K. Constant, R. Biswas, M.M. Sigalas, and K.M. Ho, J. Am. Ceram. Soc. 85(1), 383 (2002).Google Scholar
  4. 4.
    K. Shimizu, H. Imai, H. Hirashima, and K. Tsukuma, Thin Solid Film. 351, 220 (1999).CrossRefGoogle Scholar
  5. 5.
    D. Mardare, M. Tasca, M. Delibas, and G.I. Rusu, Appl. Surf. Sci. 156, 200 (2000).CrossRefGoogle Scholar
  6. 6.
    W.G. Lee, S.I. Woo, J.C. Kim, S.H. Choi, and K.H. Oh, Thin Solid Film. 237, 4459 (1994).CrossRefGoogle Scholar
  7. 7.
    E.K. Kim, M.H. Son, S.K. Min, Y.K. Han, C.H. Wang, and S.S. Yom, J. Appl. Phys. 79, 4459 (1996).CrossRefGoogle Scholar
  8. 8.
    D. Bhattacharyya, N.K. Sahoo, S. Thakur, and N.C Das, Thin Solid Film. 360, 96 (2000).CrossRefGoogle Scholar
  9. 9.
    H. Ichinose, A. Terasaki, and H. Katsuki, J. Ceram. Soc. Japan 104(8), 715 (1996).Google Scholar
  10. 10.
    H. Ichinose, A. Kawahara, and H. Katsuki, J. Ceram. Soc. Japan 104(9), 914 (1996).Google Scholar
  11. 11.
    Y. Gao, Y. Masuda, Z. Peng, T. Yonezawa, and K. Koumoto, J. Mater. Chem. 13, 608 (2003).CrossRefGoogle Scholar
  12. 12.
    C.K. Lee, D.K. Kim, and J.H Lee, J. Sol-Gel.Sci Techn. 31, 67 (2004).CrossRefGoogle Scholar
  13. 13.
    L. Ge, M.X. Xu, L.E.Y.M. Tian, and H.B. Fang, K. Engin Mater. 280–283, 809 (2005).CrossRefGoogle Scholar
  14. 14.
    L. Ge, M.X. Xu, and L.E.H.B. Fang, Chin. J. Inorg. Chem, 21(3), 394 (2005).Google Scholar
  15. 15.
    K.C. Zhang, and L.H. Zhang, Crystal Growth. (The Science Publishing House, China, 79 1981).Google Scholar
  16. 16.
    X. Li, C. Chen, and J. Zhao. Langmuir 17, 4118 (2001).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.School of Materials Science and Engineering, Key Laboratory for advanced Ceramics and Machining Technology of Ministry of EducationTianjin UniversityTianjinP.R. China

Personalised recommendations