Journal of Sol-Gel Science and Technology

, Volume 42, Issue 1, pp 13–20 | Cite as

A new study on the kinetics of Stöber synthesis by in-situ liquid 29Si NMR

  • Yao XuEmail author
  • Dong Wu
  • Yuhan Sun
  • Hongchang Gao
  • Hanzhen Yuan
  • Feng Deng


Liquid-state 29Si NMR was used to investigate the hydrolysis and condensation kinetics of ammonia-catalyzed tetraethoxysilane (TEOS) in methanol system. The reactive rate constants were calculated by applying first-order reaction approximation and the steady state approximation theory. The reaction orders with respect to TEOS, ammonia and water were derived, as well as the activation energies and the Arrhenius constants. It was found that the formation of intermediate species Si(OH)(OEt)3 was the rate-limiting step and its reaction rate equation was r TEOS=7.41×10−3[TEOS][NH3]0.333[H2O]0.227. Higher reactive temperature benefited the hydrolysis of TEOS. The results presented here indicated quantificationally that the formation of colloidal SiO2 particles was controlled by the initial hydrolysis of TEOS.


Stöber synthesis Reaction kinetics Nuclear magnetic resonance 



The financial support from the National Key Native Science Foundation (No. 20133040) was gratefully acknowledged.


  1. 1.
    Shingo K, Ikuko Y, Noriko Y (1997) In: Dunn BS, Mackenzzie JD, Pope EJ, Schmidt HK, Yanane M (eds) Sol-Gel Optics IV, SPIE vol. 3136. The international society for optical engineering, Bellingham, WashingtonGoogle Scholar
  2. 2.
    Stöber W, Fink A, Bohn E (1968) J Colloid Interface Sci 26:62CrossRefGoogle Scholar
  3. 3.
    Lee K, Look JL, Harris MT, McCormick AV (1997) J Colloid Interf Sci 194:78CrossRefGoogle Scholar
  4. 4.
    Matsoukas T, Gulari E (1988) J Colloid Interface Sci 124:252CrossRefGoogle Scholar
  5. 5.
    Bogush GH, Zukoski CF (1991) J Colloid Interface Sci 142:1CrossRefGoogle Scholar
  6. 6.
    Harris MT, Brunson RR, Byers CH (1990) J Non-Cryst Solids 121:397CrossRefGoogle Scholar
  7. 7.
    Green DL, Jayasundara S, Yui-Fai Lam, Harris MT (2003) J Non-Cryst Solids 315:166CrossRefGoogle Scholar
  8. 8.
    Sadasivan S, Duber AK, Li Y, Rasmussen DH (1998) J Sol-Gel Sci Tech 5:12Google Scholar
  9. 9.
    Harris RK, Kimber BJ (1974) J Organometal Chem 70:43CrossRefGoogle Scholar
  10. 10.
    Bailey JK, McCartney ML (1992) Colloids Surf 151:63Google Scholar
  11. 11.
    Assink RA, Kay BD (1991) Ann Rev Mater Sci 21:491CrossRefGoogle Scholar
  12. 12.
    Sugahara Y, Okada S, Kuroda K, Kato C (1992) J Non-Cryst Solids 139:25CrossRefGoogle Scholar
  13. 13.
    Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, San DiegoGoogle Scholar
  14. 14.
    Fyfe CA, Aroca PP (1997) J Phys Chem B 101:9504CrossRefGoogle Scholar
  15. 15.
    Volk L, Richardson W (1977) J Chem Educ 54:95CrossRefGoogle Scholar
  16. 16.
    David Cater E (1983) J Chem Educ 60:109Google Scholar
  17. 17.
    Parker AJ (1967) Adv Phys Org Chem 5:173CrossRefGoogle Scholar
  18. 18.
    Parker AJ (1969) Chem Rev 1:69Google Scholar
  19. 19.
    Iler RK (1979) The chemistry of silica. Wiley, New YorkGoogle Scholar
  20. 20.
    Keefer KD (1984) In: Brinker CJ, Clark DE Ulrich DR (eds) Better ceramics through chemistry. North-Holland, New York, p 15Google Scholar
  21. 21.
    Boukari H, Long GG, Harris MT (2000) J Colloid Interf Sci 229:129CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Yao Xu
    • 1
    Email author
  • Dong Wu
    • 1
  • Yuhan Sun
    • 1
  • Hongchang Gao
    • 2
  • Hanzhen Yuan
    • 2
  • Feng Deng
    • 2
  1. 1.State Key Laboratory of Coal Conversion, Institute of Coal ChemistryChinese Academy of SciencesTaiyuanChina
  2. 2.State Key Laboratory of Magnetic Resonance & Atomic & Molecular Physics, Wuhan Institute of Physics and MathematicsChinese Academy of SciencesWuhanChina

Personalised recommendations