Journal of Sol-Gel Science and Technology

, Volume 42, Issue 1, pp 89–93 | Cite as

Hafnia sol-gel films synthesized from HfCl4: Changes of structure and properties with the firing temperature

  • Tongjit Kidchob
  • Luca Malfatti
  • Filomena Serra
  • Paolo Falcaro
  • Stefano Enzo
  • Plinio Innocenzi
Article

Abstract

Thin sol-gel hafnia films have been synthesised from HfCl4, the synthesis has revealed to be a simple route to fabrication of hafnia films with high transparency in the UV-visible range. The films have been fired at different temperatures in air up to 1000°C and have been characterized by X-ray diffraction and Fourier transform infrared spectroscopy. Infrared absorption spectra of hafnia films have allowed to follow the formation of monoclinic crystalline phases together with XRD. Formation of monoclinic hafnia crystallites has been observed upon calcination at temperatures higher than 600°C, as shown by infrared spectroscopy and XRD.

The optical transmission and the refractive index as a function of the temperature of firing have been characterized by UV-Visible spectroscopy and spectroscopic ellipsometry. The hafnia films, after firing at 600°C, had a refractive index of 1.92 with a thickness of around 70 nm.

Keywords

Hafnia Films Infrared spectroscopy XRD 

References

  1. 1.
    Wilk GD, Wallace RM, Anthony JM (2001) J Appl Phys 89:5243CrossRefGoogle Scholar
  2. 2.
    Kukli K, Ritala M, Lesela M, Sajavaara T, Keinonen J, Jones AC, Roberts JL (2003) Chem Mater 15:1722CrossRefGoogle Scholar
  3. 3.
    Hausmann DM, Kim E, Becker J, Gordon RG (2002) Chem Mater 14:4350CrossRefGoogle Scholar
  4. 4.
    Kukli K, Ritala M, Sajavaar T, Keinonen J, Leskela M (2002) Thin Solid Films 72:416Google Scholar
  5. 5.
    Mui C, Musgrave CB (2004) J Phys Chem B 108:15150CrossRefGoogle Scholar
  6. 6.
    Callegari A, Cartier E, Gribelyuk M, Okorn-Schmidt HF, Zabel T (2001) J Appl Phys 90:6466CrossRefGoogle Scholar
  7. 7.
    Balog M, Schieber M, Michman M, Patai S (1977) Thin Solid Films 47:109CrossRefGoogle Scholar
  8. 8.
    Abrutis A, Hubert-Pfalzagraf LG, Pasko SV, Bertasyte A, Weiss F, Janickis V (2004) J Cryst Growth 267:539CrossRefGoogle Scholar
  9. 9.
    Frank MM, Sayan S, Dormann S, Emge TJ, Wielunski LS, Garfunkel E, Chabal YJ (2004) Mater Sci Eng B 109:6Google Scholar
  10. 10.
    Yu JJ, Fang Q, Zhang JY, Wang ZM, Boyd IM (2003) App Surf Sci 208–209 676CrossRefGoogle Scholar
  11. 11.
    Aoki Y, Kunitake T, Nakao A (2005) Chem Mater 17:450CrossRefGoogle Scholar
  12. 12.
    Wang ZJ, Kumagai T, Kokawa H, Tsuaur J, Ichiki M, Maeda R (2005) J Cryst Growth 281:452CrossRefGoogle Scholar
  13. 13.
    Nishide T, Honda S, Matsuura M, Ide M (2000) Thin Solid Films 371:61CrossRefGoogle Scholar
  14. 14.
    Young RA (ed) (1993) The rietvel method university press. Oxford, UKGoogle Scholar
  15. 15.
    Lutterotti L, Gialanella S (1998) Acta Mater 46:101CrossRefGoogle Scholar
  16. 16.
    Zhao XY, Vanderbilt D (2002) Phys Rev B 65:233106CrossRefGoogle Scholar
  17. 17.
    Neumayer DA, Cartier E (2001) J Appl Phys 90:1801CrossRefGoogle Scholar
  18. 18.
    Innocenzi P (2003) J Non-Cryst Solids 316:309CrossRefGoogle Scholar
  19. 19.
    Aarik J, Aidla A, Kiisler A-A, Uustare T, Sammelselg V (1999) Thin Solid Films 340 110CrossRefGoogle Scholar
  20. 20.
    Lehan JP, Mao Y, Bpvard BG, Macleaod HA (1991) Thin Solid Films 203:227CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Tongjit Kidchob
    • 1
  • Luca Malfatti
    • 1
  • Filomena Serra
    • 1
  • Paolo Falcaro
    • 2
  • Stefano Enzo
    • 3
  • Plinio Innocenzi
    • 1
  1. 1.Laboratorio di Scienza dei Materiali e Nanotecnologie, Dipartimento di Architettura e PianificazioneUniversità di Sassari and Nanoworld Institute, Palazzo Pou SalidAlghero (SS)Italy
  2. 2.Associazione CIVEN – Nano Fabrication FacilityMargheraItaly
  3. 3.Dipartimento di ChimicaUniversità di SassariSassariItaly

Personalised recommendations