Journal of Sol-Gel Science and Technology

, Volume 41, Issue 1, pp 57–63

Characterisation of a new sol-gel precursor for a SiO2-rhodamine 6G hybrid class II material

  • S. Grandi
  • C. Tomasi
  • P. Mustarelli
  • F. Clemente
  • C. M. Carbonaro
Article

Abstract

The entrapment of organic dyes in inorganic solids offers several advantage for solid-state laser applications with respect to the use of liquid or polymer hosts. Among the various inorganic hosts, silica is preferred for its superior mechanical, thermal and optical properties. Organic dyes, such as Rhodamine 6G (Rh6G), can be immobilised in SiO2 both physically (materials of class I), and by covalent bonds (class II materials). In the past years Rh6G-SiO2 class I hybrids were prepared. In this work we propose, for the first time, a Rh6G-SiO2 class II hybrids. We describe the preparation of a suitable sol-gel Rh6G precursor verified by FT-IR analysis and report the characterization of the hybrid materials by means of thermal and porosimetric analysis and optical spectroscopy measurements. The precursor is thermally stable up to ∼250°C, and its optical characteristics (UV-VIS absorbance and photoluminescence, PL) do not change with respect to those of the pristine dye molecule. The PL spectra of the final hybrids show that they are promising candidates for applications in solid state dye lasers.

Keywords

Solid state dye laser Rhodamine 6G doped silica, class II hybrid Photoluminescence of rhodamine 6G Sol-gel Porous silica glass 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reisfeld R (2001) Opt Mater 16:1CrossRefGoogle Scholar
  2. 2.
    Oh HT, Kam H-S, Kwon TY, Moon BK, Yun SI, (1992) Mater Lett 13:139CrossRefGoogle Scholar
  3. 3.
    Rao AP, Rao AV (2003) Sci Technol Adv Mater 4:121CrossRefGoogle Scholar
  4. 4.
    Wheeler EGJ, Thomas JK (1982) J Phys Chem 86:4540CrossRefGoogle Scholar
  5. 5.
    Furlong N (1982) Aust J Chem 35:911CrossRefGoogle Scholar
  6. 6.
    Wi S, Gafney D (1983) Chem Phys Lett 99:253CrossRefGoogle Scholar
  7. 7.
    Zeroskii VI, Meshovskii IK, Sechkarev AV (1982) Sov Phys Dokl 27:1047Google Scholar
  8. 8.
    Reisfeld R, Mor N, Avnir D (1983) Solar Energy Mater 8:399CrossRefGoogle Scholar
  9. 9.
    Harrison CC, McGiveron JK, Li X (1994) J Sol-Gel Sci Technol 2:855CrossRefGoogle Scholar
  10. 10.
    Gall GJ, Li X, King AT (1994) Sol-Gel Sci Technol 2:775CrossRefGoogle Scholar
  11. 11.
    Allen NS, McKellar JF (ed) (1980) Photochemistry of Dyed and Pigmented Polymers Applied Science Publishers, LondonGoogle Scholar
  12. 12.
    Reisfeld R, Jorgensen CK (1082) Struct Bonding 49:1Google Scholar
  13. 13.
    Garoff S, Weitz DA, Alvarez MS (1982) Chem Phys Lett. 93:283CrossRefGoogle Scholar
  14. 14.
    Garoff S, Stephens RB, Hanson CD, Sorensen GL (1981) J Lumin 24/25:773CrossRefGoogle Scholar
  15. 15.
    Liang Y, Goncalves AMP, Negus DK (1983) J Phys Chem 87:1CrossRefGoogle Scholar
  16. 16.
    Avnir D, Levy D, Reisfeld R (1984) J Phys Chem 88:5956CrossRefGoogle Scholar
  17. 17.
    Makishima A, Tani T (1986) J Am Ceram Soc 69(4):C72CrossRefGoogle Scholar
  18. 18.
    Pouxviel JC, Parvaneh S, Knobbe ET, Dunn B (1989) Solid State Ionics 32(33):646CrossRefGoogle Scholar
  19. 19.
    Blonski S (1991) Chem Phys Lett 184(1/2/3):229CrossRefGoogle Scholar
  20. 20.
    Seddon AB, Illston TJ, Cannell AC, Bagnall C (1991) Chemtronics 5:117Google Scholar
  21. 21.
    Narang U, Bright FV, Prasad PN (1993) Appl Spectrosc 47(2):229CrossRefGoogle Scholar
  22. 22.
    Takahashi Y, Kitamura T, Nogami M, Uchida K, Yamanaka T (1994) J Luminescence 60&61:451CrossRefGoogle Scholar
  23. 23.
    Innocenzi P, Kozuka H, Yoko T (1996) J Non-Cryst Solids 201:26CrossRefGoogle Scholar
  24. 24.
    Costa TMH, Stefani V, Balzaretti N, Francisco LTST, Gallas MR, de Jornada JAH (1997) J Non-Cryst Solids 221:157CrossRefGoogle Scholar
  25. 25.
    Malashkevich GE, Poddeneznyi EN, Melnichenko IM, Prokopenko VB, Demyanenko DV (1998) Phys Solid State 40 (3):427CrossRefGoogle Scholar
  26. 26.
    Zang Y, Wang M, Wu D, Fa QW (1998) J Mater Sci Lett 17:909CrossRefGoogle Scholar
  27. 27.
    Lo D, Lam SK, Ye C, Lam KS (1998) Opt Commun 156:316CrossRefGoogle Scholar
  28. 28.
    Hungerford G, Suhling K, Ferriera JA (1999) J Photochem Photobiol A: Chem 129:71CrossRefGoogle Scholar
  29. 29.
    Zhu X-L, Lam S-K, Lo D (2000) Appl Opt 39(18):3104CrossRefGoogle Scholar
  30. 30.
    Rao AP, Rao AV (2003) Material Letters 57:3741CrossRefGoogle Scholar
  31. 31.
    Bentivegna F, Canva M, Brun A, Chaput F, Boilot JP (1997) J Sol-Gel Sci Technol 9:33Google Scholar
  32. 32.
    Canva M, Dubois A, Georges PM, Brun A, Chaput F, Boilot JP Proc. SPIE Vol. 2288, Sol-Gel Optics III, 298Google Scholar
  33. 33.
    Suratwala T, Gardlund Z, Davidson K, Uhlmann DR, Watson J, Peyghambarian N (1998) Chem Mater 10:190CrossRefGoogle Scholar
  34. 34.
    Anedda A, Carbonaro CM, Clemente F, Corpino R, Grandi S, Magistris A, Mustarelli P (2005) J Non Cryst Solids 351 (21–23):1850CrossRefGoogle Scholar
  35. 35.
    Brinker CJ, Scherer GW (1990) Sol-Gel Science: The physics and chemistry of Sol-Gel Processing. Academic Press IncGoogle Scholar
  36. 36.
    Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309CrossRefGoogle Scholar
  37. 37.
    Horvath G, Kawazoe K (1983) J Chem Eng Jpn 16:470Google Scholar
  38. 38.
    Barret EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373CrossRefGoogle Scholar
  39. 39.
    Webb P A, Orr C (1997) Analytical Methods in Fine Particle Technology. Micromeritics Inst. Corp., Norcross GAGoogle Scholar
  40. 40.
    Carbonaro CM, Anedda A, Grandi S, Magistris A (2006) Hybrid materials for solid state dye laser applications. Journal of Physical Chemistry B 110:12932Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • S. Grandi
    • 1
  • C. Tomasi
    • 1
  • P. Mustarelli
    • 1
  • F. Clemente
    • 2
    • 3
  • C. M. Carbonaro
    • 2
    • 3
  1. 1.Department of Physical ChemistryUniversity of Pavia, INSTM, and IENI-CNRPaviaItaly
  2. 2.Department of PhysicsUniversity of CagliariCagliari
  3. 3.INFMCittadella UniversitariaMonserrato, CagliariItaly

Personalised recommendations