Advertisement

Journal of Sol-Gel Science and Technology

, Volume 41, Issue 1, pp 71–78 | Cite as

Thermal and FT-IR study of the hybrid ethylene-glycol–silica matrix

  • M. Stefanescu
  • M. Stoia
  • O. Stefanescu
Article

Abstract

Hybrid organic-inorganic materials, silica—ethylene glycol (EG), were prepared by the sol-gel process from mixtures of tetraetoxysilane (TEOS) and EG under acidic catalysis. The resulting hybrid material was studied through thermal analysis and FT-IR spectroscopy. This techniques evidenced the presence of EG in the silica matrix in three forms: free in the hybrid matrix pores, hydrogen bonded with the silanol groups and chemically bonded (through condensation) in the silica network. Through the thermal treatment of the hybrid matrix, we obtained a silica matrix, with specific surface of 360 m2/g.

Keywords

Sol-gel Ethylene glycol Hybrid materials Thermal analysis FT-IR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Higuchi T, Kuramada K, Nagamine S, Lothongkum AW, Tanigaki M (2000) J Mater Sci 35:3237CrossRefGoogle Scholar
  2. 2.
    Shilova O, Tarasyuc EV, Shevchenko VV, Klimenko NS, Movchan TG, Hashkovsky SV, Shilov VV (2003) Glass Phys Chem 29(4):378CrossRefGoogle Scholar
  3. 3.
    Khimich NN (2004) Glass Phys Chem 30(5):430CrossRefGoogle Scholar
  4. 4.
    Kursawe M, Anselmann R, Hilarius V, Pfaff G (2005) J Sol-Gel Sci Technol 33:71CrossRefGoogle Scholar
  5. 5.
    Zaharescu M, Crisan M, Predoana L, Gartner M, Cristea D, Degeratu S, Manea E (2004) J Sol-Gel Sci Technol 32:173CrossRefGoogle Scholar
  6. 6.
    Laridjani M, Lafontaine E, Bayyl JP, Judeinstein P (1999) J Mater Sci 34:5945CrossRefGoogle Scholar
  7. 7.
    Sediri F, Gharbi N (2005) J Sol-Gel Sci Technol 33:33CrossRefGoogle Scholar
  8. 8.
    Parashar VK, Raman V, Bahl OP (1996) J Mater Sci Lett 15:1403CrossRefGoogle Scholar
  9. 9.
    Uchida N, Ishiyama N, Kato Z, Uematsu K (1994) J Mater Sci Lett 29:5188Google Scholar
  10. 10.
    Rao AV, Kulkarni MM (2003) Mater Chem Phys 77:819CrossRefGoogle Scholar
  11. 11.
    Lenza RFS, Wasconcelos WL (2001) Mater Res 4(3):175Google Scholar
  12. 12.
    Stefanescu M, Caizer C, Stoia M, Stefanescu O (2006) Acta Mater 54:1249CrossRefGoogle Scholar
  13. 13.
    Stefanescu M, Caizer C, Stoia M, Stefanescu O (2005) J Optoelectron Adv Mater 7(2):607Google Scholar
  14. 14.
    Hinic I, Stanisic G, Popovic Z (2003) J Serb Chem Soc 68(12):953CrossRefGoogle Scholar
  15. 15.
    Higginbotham CP, Browner RF, Jenkins JD, Rice JK (2003) Mater Lett 57:3970CrossRefGoogle Scholar
  16. 16.
    Wagh PB, Rao AV, Haranath D (1998) Mater Chem Phys 53:41CrossRefGoogle Scholar
  17. 17.
    Sefcik J, McCormick AV (1997) Catal Today 35:205CrossRefGoogle Scholar
  18. 18.
    Lenza RFS, Vasconcelos WL (2003) J Non-Cryst Solids 330:216CrossRefGoogle Scholar
  19. 19.
    Schlottig F, Textor M, Georgi U, Roewer G (1999) J Mater Sci Lett 18:599CrossRefGoogle Scholar
  20. 20.
    Mondragon M, Castano VM, Garcia JM, Tellez CAS (1995) Vib Spectrosc 9:293CrossRefGoogle Scholar
  21. 21.
    Voulgaris Ch, Amanatide E, Mataras D, Rapakoulies DE (2005) J Phys: Conference Series 10:206CrossRefGoogle Scholar
  22. 22.
    Vasconcelos DCL, Campos WR, Vasconcelos V, Vasconcelos WL (2002) Mater Sci Eng A 334:53CrossRefGoogle Scholar
  23. 23.
    Lenza RFS, Vasconcelos WL (2001) Mater Res 4(3):53Google Scholar
  24. 24.
    Ksapabutr B, Gulari E, Wongkasemjit S (2004) Mater Chem Phys 83:34CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Faculty of Industrial Chemistry and Environmental EngineeringUniversity “Politehnica” of TimisoaraTimisoaraRomania

Personalised recommendations