Advertisement

Journal of Sol-Gel Science and Technology

, Volume 37, Issue 1, pp 79–85 | Cite as

Protective Properties of a Sol-Gel Coating on Zinc Coated Steel

  • A. Conde
  • J. De DamboreneaEmail author
  • A. Durán
  • M. Menning
Article

Abstract

Galvanised and galvannealed steels are widely used due to their good corrosion resistance in aqueous solutions. However, when additional protection is required, organic coatings, corrosion inhibitors or conversion coatings are used to improve their corrosion protection. In this work, sol-gel coating was used to improve the corrosion behaviour of these two materials. This paper analyses the final protective properties of a sol-gel coating prepared by basic catalysis and its dependence on the sintering temperature and time of treatment. The influence of the sintering conditions on the galvanised and galvannealed substrates is a decisive factor for the coating quality and for the barrier affect against the aggressive media. While heat treatment time is the controlling factor for the galvannealed steels, the temperature is determining in the case of the galvanised. Corrosion mechanisms for sol-gel galvanised steels did not changed with respect to the uncoated steel. However for galvannealed steel, after coating the mechanism is not purely cathodic.

Keywords

sol-gel coating corrosion protection galvanised steel galvannealed 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.F. Montemayor, A.M. Simões, M.G.S. Ferreira, B. Williams, and H. Edwards, Prog. Org. Coat. 38, 17 (2000).Google Scholar
  2. 2.
    P.T. Tang, G. Bench-Nielsenand, and P. Moller, Plat. Surf. Finish. (November 20, 1994).Google Scholar
  3. 3.
    W.J. Wittke, Met. Finish. 87(8), 24 (1989).Google Scholar
  4. 4.
    M. Shoeib, M Farouk, and F. Hanna, Met. Finish. 95(9), 54 (1997).Google Scholar
  5. 5.
    D. Weng, R.Z. Wang, and C.Q. Zhang, Met. Finish. 96(9), 54 (1998).Google Scholar
  6. 6.
    S.M. Powell, H.N. McMurray, and D.A. Worseley, Corrosion 55(11), 1040 (1999).Google Scholar
  7. 7.
    S. Böhm, R. Greef, H.N. McMurray, S.M. Powell, and D.A. Worsley, J. Electrochem. Soc. 147(9), 3286 (2000).Google Scholar
  8. 8.
    A. Barbucci, E. Pedroni, J.L. Perillon, G. Gerisola, Prog. Org. Coat. 29, 7 (1996).CrossRefGoogle Scholar
  9. 9.
    B.C. Dave, X.K. Hu, Y. Devaraj, and S.K. Dhali, J. Sol-Gel Sci. Tech. 32(1–3), 143 (2004).Google Scholar
  10. 10.
    S. Ono, H. Tsuge, Y. Nishi, and S. Hirano, J. Sol-Gel Sci. Tech. 29(3), 147 (2004).CrossRefGoogle Scholar
  11. 11.
    X.F. Yang, D.E. Tallman, V.J. Gelling, G.P. Bierwagen, L.S. Kasten, and J. Berg, Surf. Coat. Tech. 140, 44 (2001).CrossRefGoogle Scholar
  12. 12.
    J.H. Osborne, Prog. Org. Coat. 41, 280 (2001).Google Scholar
  13. 13.
    A. Durán, I. Castro, J. Gallardo, N. Pellegri, O. de Sanctis, S. Ceré, P. Galliano, A. Conde, and J.J. de Damborenea, Submitted to International Materials Review.Google Scholar
  14. 14.
    W. Boysen, A. Frattini, N. Pellegri, and O. de Sanctis, Surf. Coat. Tech. 122, 14 (1999).CrossRefGoogle Scholar
  15. 15.
    M. Khobaib, L.B. Reynolds, and M.S. Donley, Surf. Coat. Tech. 140, 16 (2001).CrossRefGoogle Scholar
  16. 16.
    D.C.L. Vasconcelos, J.A.N. Carvalho, M. Mantel, and W.L. Vasconcelos, J. Non-Cryst. Solids 273, 135 (2000).CrossRefGoogle Scholar
  17. 17.
    G.P. Thim, M.A.S. Oliveira, E.D.A. Oliveira, and F.C.L. Melo, J. Non-Cryst. Solids 273, 124 (2000).CrossRefGoogle Scholar
  18. 18.
    S. Dalbin, G. Maurin, R. P. Nogueira, J. Persello, and N. Pommier, Surf. Coat. Tech. 194, 363 (2005).CrossRefGoogle Scholar
  19. 19.
    G. Jonschker, M. Menning, and H. Schmidt, European Patent EP0973958 (1998).Google Scholar
  20. 20.
    M. Mennig, G. Jonschker, and H. Schmidt, “Verfahren zum Versehen einer metallischen Oberfläche mit einer glasartigen Schicht” DE 197 14 949 A1, 10.04.1997.Google Scholar
  21. 21.
    A.R. Marder, Prog. Mater. Sci. 45, 191 (2000).CrossRefGoogle Scholar
  22. 22.
    Metals Handbook, 9th Ed, Vol. 13, (ASM International, Metlas Park, OH, 1988) p. 212.Google Scholar
  23. 23.
    A. Conde, A.Durán, and J. De Damborenea, Bol. Soc. Esp. Ceram. Vidrio. 41(3), 319 (2002).Google Scholar
  24. 24.
    M A. Arenas, M. Bethencour, F.J. Botana, J. de Damborenea, and M. Marcos, Corros. Sci., 43, 157 (2001).Google Scholar
  25. 25.
    K. Aramaki, Corros. Sci. 43, 591 (2001).Google Scholar
  26. 26.
    A. van der Heiden, A.J.C. Burghardt, W. van Koesveld, E.B. van Perstein, and M.G.J. Spanjers, Galvannealed microstructure and anti-powdering process windows. in The physical metallurgy of zinc coated steel, edited by A.R. Marder (TMS, Warrendale, PA, 1994) p. 251.Google Scholar
  27. 27.
    C.E. Jordan, A.R. Marder, A model of galvannealed morphology development. in The physical metallurgy of zinc coated steel, edited by A.R. Marder (TMS, Warrendale, PA, 1994) p. 197.Google Scholar
  28. 28.
    C. Coffin, S.W. Thompson, Galvannealing of interstitial-free sheet steels strengthened by manganese, silicon, or phosphorous: an initial study. in The physical metallurgy of zinc coated steel, edited by A.R. Marder (TMS, Warrendale, PA, 1994) p. 181.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • A. Conde
    • 1
  • J. De Damborenea
    • 1
    Email author
  • A. Durán
    • 2
  • M. Menning
    • 3
  1. 1.Depto. Corrosion and ProtecctionCENIM/CSIC. Avda. Gregorio del Amo, 8.MadridSpain
  2. 2.Instituto de Cerámica y VidrioMadridSpain
  3. 3.INM—Institute for New MaterialsIm Stadtwald—Geb.SaarbrueckenGermany

Personalised recommendations