Journal of Sol-Gel Science and Technology

, Volume 37, Issue 1, pp 57–62 | Cite as

Photochromic Gratings in Sol-Gel Hybrid Materials Containing Cyanoazobenzene Chromophores

Article

Abstract

The photochromic sol-gel hybrid materials containing cyanoazobenzene chromophores were described. These materials were obtained by copolycondensation of the functionalized triethoxysilane and tetraethoxysilane precursor. They were deposited on glass substrates via spin coating and casting techniques to provide thin transparent films. The UV-vis spectroscopy showed reversibility of the trans-cis photoisomerization of the chromophoric fragments. The reversible change of refractive index of the films on illumination with white light was determined by ellipsometry. The difference of real part of the refractive index of the sample was in the range 0.0053–0.0075. Formation of diffraction grating was achieved by two beam coupling arrangement using a 532 nm laser. The diffraction efficiency for the first order diffraction was in the range of 2–3.5%. The kinetics of photochromic grating recording and erasing was described by biexponential function approach.

Keywords

sol-gel films hybrid materials azo dye Photochromic grating 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Levy, Chemistry of Materials 9, 2666 (1997).CrossRefGoogle Scholar
  2. 2.
    B. Lebeau and C. Sanchez, Current Opinion in Solid State and Materials Science 4, 11 (1999).CrossRefGoogle Scholar
  3. 3.
    R. Nakao, N. Ueda, Y. Abe, T. Horii, and H. Inoue, Polymers for Advanced Technologies 7, 863 (1996).CrossRefGoogle Scholar
  4. 4.
    R. Reisfeld, Optical Materials 16, 1 (2001).Google Scholar
  5. 5.
    Q. Wang and B. Yan, Journal of Materials Research 20, 592 (2005).Google Scholar
  6. 6.
    Q. Wang and B. Yan, Journal of Materials Chemistry 14, 2450 (2004).Google Scholar
  7. 7.
    H. Schmidt, Journal of Non-Crystalline Solids 73, 681 (1985).CrossRefGoogle Scholar
  8. 8.
    P. Prosposito and M. Casalboni, “Optical Properties of Functionalized Sol-Gel-Derived Hybrid Materials”, in Handbook of Organic-Inorganic Hybrid Materials and Nanocomposites, Volume 1: Hybrid Materials, edited H.S. Nalwa (American Scientific Publishers, 2003), p. 83.Google Scholar
  9. 9.
    F. Chaput, D. Riehl, Y. Levy, and J.P. Boilot, Chemistry of Materials 5, 589 (1993).CrossRefGoogle Scholar
  10. 10.
    B. Darracq, F. Chaput, K. Lahlil, J.P. Boilot, Y. Levy, V. Alain, L. Ventelon, and M. Blanchard-Desce, Optical Materials 9, 265 (1998).CrossRefGoogle Scholar
  11. 11.
    G.H. Hsiue, W.J. Kuo, C.H. Lin, and R.J. Jeng, Macromolecular Chemistry and Physics 201, 2336 (2000).CrossRefGoogle Scholar
  12. 12.
    B. Darracq, M. Canva, F. Chaput, J.P. Boilot, D. Riehl, Y. Levy, and A. Brun, Applied Physics Letters 70, 292 (1997).CrossRefGoogle Scholar
  13. 13.
    S. Kawata, and Y. Kawata, Chemical Reviews 100, 1777 (2000).CrossRefGoogle Scholar
  14. 14.
    R. Marino, P.P. Bersani, and I.-G. Lottici, Optical Materials 15, 279 (2001).CrossRefGoogle Scholar
  15. 15.
    R. Marino, P.P. Bersani, and I.-G. Lottici, Optical Materials 15, 175 (2000); R. Raschella, R. Marino, I.-G. Lottici, P.P. Bersani, A. Lorenzi, and A. Montenero, Optical Materials 25, 419 (2004).Google Scholar
  16. 16.
    J. Peretti, J. Biteau, J.P. Boilot, F. Chaput, V.I. Safarov, J.M. Lehn, and A. Fernandez-Acebes, Applied Physics Letters 74, 1657 (1999).CrossRefGoogle Scholar
  17. 17.
    R. Loucif-Saibi, K. Nakatani, J. Delaire, M. Dumont, and Z. Sekkat, Chemistry of Materials 5, 229 (1993).CrossRefGoogle Scholar
  18. 18.
    J.J.A. Couture, and R.A. Lessard, Applied Optics 27, 3368 (1988).Google Scholar
  19. 19.
    T. Huang, and K.H. Wagner, Journal of the Optical Society of America A 10, 306 (1993).Google Scholar
  20. 20.
    L. Nikolova, T. Todorov, N. Tomova, and V. Dragostinova, Applied Optics 27, 1598 (1988).Google Scholar
  21. 21.
    G.S. Kumar and D.C. Neckers, Chemical Reviews 89, 1915 (1989).CrossRefGoogle Scholar
  22. 22.
    J.A. Delaire and K. Nakatani, Chemical Reviews 100, 1817 (2000).CrossRefGoogle Scholar
  23. 23.
    P.-A. Blanche, Ph.C. Lemaire, C. Maertens, P. Dubois, and R. Jerome, Journal of the Optical Society of America B 17, 729 (2000).Google Scholar
  24. 24.
    R. Janik, S. Kucharski, A. Kubainska, and B. Lyko, Polish Journal of Chemistry 75, 241 (2001).Google Scholar
  25. 25.
    R.J. Jeng, Y.M. Chen, A. Jain, J. Kumar, and S.K. Tripathy, Chemistry of Materials 4, 972 (1992).Google Scholar
  26. 26.
    D.H. Choi, K.J. Cho, Y.K. Cha, and S.J. Oh, Bulletin of the Korean Chemical Society 21, 1222 (2000).Google Scholar
  27. 27.
    E. Ortyl, and S. Kucharski, Central European Journal of Chemistry 2, 137 (2003).Google Scholar
  28. 28.
    R.M.A. Azzam, and N.M. Bashara, Ellipsometry and Polarized Light (North Holland Press, Amsterdam 1977, 2nd Edition 1987).Google Scholar
  29. 29.
    S. Kucharski, and R. Janik, Optical Materials 27, 1637 (2005).CrossRefGoogle Scholar
  30. 30.
    A. Natansohn, P. Rochon, J. Gosselini, and S. Xie, Macromolecules 25, 2268 (1992).Google Scholar
  31. 31.
    P. Rochon, D. Bissonnette, A. Natansohn, and S. Xie, Applied Optics 32, 7277 (1993).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institute of Organic and Polymer TechnologyWroclaw University of TechnologyWroclawPoland

Personalised recommendations