Journal of Sol-Gel Science and Technology

, Volume 36, Issue 1, pp 87–94 | Cite as

Chemical and Physical Analysis of Acetate-Oxide Sol-Gel Processing Routes for the Y-Ba-Cu-O System

  • Tarek Mouganie
  • Michelle A. Moram
  • Joy Sumner
  • Bartek A. Glowacki
  • Bart Schoofs
  • Isabel Van Driessche
  • Serge Hoste
Article

Abstract

The formation of three sols by fluorine-free aqueous and non-aqueous processes were analyzed and modified to vary the chemical properties of the sols (inks) to suit a variety of deposition processes such as dip-coating and ink-jet coating/printing. Ink-jet printing requires high wetting angles; choosing the right complexing agents to modify the ink allows the formation of droplets with high wetting angles on the surface. Dip-coating and ink-jet coating require low wetting angles; additives added to the sols reduce wetting angles to 10 and allow complete coverage of the substrate surface. The deposition theories and requirements are briefly discussed, as are some initial tests with the printing and converting of the developed superconducting inks.

Keywords

YBCO Sol-Gel Synthesis Non-fluorine Superconductor Ink-Jet Printing Ink-Jet Ink-Jet Coating Ceramic Coatings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.L. MacManus-Driscoll, in Handbook of Superconducting Materials, edited by D.A. Cardwell and D.S. Ginley, Institute of Physics, 2002, p. 565.Google Scholar
  2. 2.
    I. Van Driessche, et al., in Euro Ceramics Vii, Pt 1–3, (2002), p. 479–482.Google Scholar
  3. 3.
    I.H. Mutlu, E. Celik, and Y.S. Hascicek, Physica C-Superconductivity and Its Applications, 370(2), 113 (2002).Google Scholar
  4. 4.
    B.A. Glowacki and T. Mouganie, in European Conference on Applied Superconductivity (Sorrento, Italy: Institute of Physics, 2003).Google Scholar
  5. 5.
    L. Klein, Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics, and Speciality shapes (Noyes Publications, 1988).Google Scholar
  6. 6.
    L.E. Murr, American Society for Testing and Materials 82 (1978).Google Scholar
  7. 7.
    R.S. Liu et al., Applied Physics Letters. 57(9), 920 (1990).CrossRefGoogle Scholar
  8. 8.
    I. Schildermans et al., Physica C 278(1/2), 55 (1997).CrossRefGoogle Scholar
  9. 9.
    A. Baranauskas, D. Jasaitis, and A. Kareiva, Vibrational Spectroscopy. 28(2), 263 (2002).CrossRefGoogle Scholar
  10. 10.
    A. Aoki, S. Ohno, and Y. Muramatsu, Journal of Non-Crystalline Solids 147/148, 720 (1992).CrossRefGoogle Scholar
  11. 11.
    A.W. Adamson, Physical Chemistry of Surfaces. 3rd ed. (Wiley and Sons, 1967)Google Scholar
  12. 12.
    F.A. Cotton et al., Advanced Inorganic Chemistry, (New York: John Wiley and Sons Inc, 1998).Google Scholar
  13. 13.
    J. McKittrick and R. Contreras, Thin Solid Films. 206, 146 (1991).CrossRefGoogle Scholar
  14. 14.
    B.A. Glowacki, Superconductor Science & Technology 11(10), 989 (1998).CrossRefGoogle Scholar
  15. 15.
    T. Mouganie et al. in European Conference on Applied Superconductivity, Sorrento, Italy: Institute of Physics, 2003.Google Scholar
  16. 16.
    N.A. Rutter and B.A. Glowacki, IEEE Transactions on Applied Superconductivity. 11, 2730 (2001).CrossRefGoogle Scholar
  17. 17.
    N.A. Rutter, B.A. Glowacki, and J.E. Evetts, Superconducting Science and Technology 13(L25), (2000).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Tarek Mouganie
    • 1
    • 2
  • Michelle A. Moram
    • 2
  • Joy Sumner
    • 2
  • Bartek A. Glowacki
    • 1
    • 2
  • Bart Schoofs
    • 3
  • Isabel Van Driessche
    • 1
  • Serge Hoste
    • 1
  1. 1.IRC in Superconductivity, Cavendish LaboratoriesUniversity of CambridgeUnited Kingdom
  2. 2.Department of Materials Science and MetallurgyUniversity of CambridgeUnited Kingdom
  3. 3.Department of Inorganic and Physical ChemistryUniversity of GentKrijgslaanBelgium

Personalised recommendations