Advertisement

Journal of Sol-Gel Science and Technology

, Volume 32, Issue 1–3, pp 349–352 | Cite as

Acidity of Sulphated Zirconia Aerogels: Correlation Between XPS Studies, Surface Potential Measurements and Catalytic Activity in Isopropanol Dehydration Reaction

  • M. K. Younes
  • A. Ghorbel
  • A. Rives
  • R. Hubaut
Article

Abstract

Sulphated zirconias with various atomic S/Zr ratios were prepared by sol–gel method. The acidity of these solids has been studied through qualitative and quantitative XPS studies, surface potential measurements and isopropanol dehydration reaction. The Correlation between corresponding results show that when zirconia is doped by sulfate groups the surface becomes more acidic in term of Lewis acidity and that the oxygen species in the sample exist in many types, which one is related to solid acidity. This type of oxygen species, probably in the hydroxyl groups, is other than the oxygen species of zirconia network and the oxygen sulphate groups. Consequently, acidity of sulphated zirconia is mainly due to a strong Lewis nature of the surface, which can give a Brönsted acidity by water or reactant chemisorptions

Keywords

sulphated zirconia Brönsted acidity Lewis acidity isopropanol surface potential measurements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Hino, S. Kobayashi, and K. Arata, J. Am. Chem. Soc. 101, 6439 (1979).Google Scholar
  2. 2.
    K. Arata, Adv. Catal. 37, 165 (1990).Google Scholar
  3. 3.
    M. Signoretto, F. Pinna, G. Strukul, G. Cerrato, and C. Morterra, Catal. Lett. 36, 129 (1996).Google Scholar
  4. 4.
    G. Moretta, G. Cerrato, S. Di Ciero, M. Signoretto, F. Pinna, and G. Strukul, J. Catal. 165, 172 (1997).Google Scholar
  5. 5.
    M. Signoretto, F. Pinna, G. Strukul, P. Chies, G. Cerrato, S. Di Ciero, and G. Morterra, J. Catal. 167, 522 (1997).Google Scholar
  6. 6.
    V. Parvalescu, S. Coman, P. Grange, and V.I. Parvulescu, Appl. Catal. 172, 27 (1999).Google Scholar
  7. 7.
    D.A Word and E.I. Ko, J. Catal. 157, 321 (1995).Google Scholar
  8. 8.
    D.A Word and E.I. Ko, J. Catal. 150, 18 (1994).Google Scholar
  9. 9.
    M.K. Younes, A. Ghorbel, A. Rives, and R. Hubaut, J. Sol-Gel Sci. Techn. 26, 677 (2003).Google Scholar
  10. 10.
    M.K. Younes, A. Ghorbel, A. Rives, and R. Hubaut, J. Sol-Gel Sci. Techn. 19, 817 (2000).Google Scholar
  11. 11.
    J. Yamachi, K. Tanabe, and Y.C. Kunj, Mater. Chem. Phys. 16, 67 (1987).Google Scholar
  12. 12.
    J.R. Sohn and H.W. Kim, J. Mol. Catal. 52, 361 (1989).Google Scholar
  13. 13.
    M. Hino and K.J. Arata, J. Chem. Soc. Commun. 851 (1980).Google Scholar
  14. 14.
    V. Paravulesca, S. Coman, V.I. Paravulesca, P. Grange, and G. Poncelet, J. Catal. 180, 66 (1998).Google Scholar
  15. 15.
    Y. Barbaux, J.P. Bonnelle, and J.P. Beaufils, J. Chim. Phys. 73, 25 (1976).Google Scholar
  16. 16.
    S. Ardizzone, C.L. Bianchi, and M. Signoretto, Appl. Surf. Sci. 163, 213 (1998).Google Scholar
  17. 17.
    D. Faffad, A. Chambellan, and J.C. Lavelley, J. of Molecular Catalysis A: Chemical 168, 153 (2001).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • M. K. Younes
    • 1
  • A. Ghorbel
    • 1
  • A. Rives
    • 2
  • R. Hubaut
    • 2
  1. 1.Laboratoire de Chimie des Matériaux et CatalyseFaculté des Sciences de Tunis Département de ChimieTunisTunisia
  2. 2.Laboratoire de Catalyse Homogène et Hétérogène-URA CNRS 402Université des Sciences et TechnologieVilleneuve d’AscqFrance

Personalised recommendations