Journal of Sol-Gel Science and Technology

, Volume 32, Issue 1–3, pp 311–316 | Cite as

Preparation of Silicates Using HSi(OC2H5)3 and Their NO x -Adsorption Behavior

Article

Abstract

The preparation and NO-adsorption/desorption behavior of Li, Ca and Ba silicates were investigated aiming at the application to a NO x -absorbent. Li silicate was prepared by reaction of HSi(OC2H5)3 with aqueous lithium silicate solution (LSS). Ca and Ba silicates were prepared from gels obtained using CH3Si(OC2H5)3, Si(OC2H5)4, HSi(OC2H5)3 and alkaline-earth alkoxides. The surface of these silicates indicated the solid basicity of H0 = 9 and adsorbed the acidic gas of NO. FT-IR spectra of the silicates adsorbing NO showed the absorption peaks in the range of 1300–1600 cm− 1 corresponding to ionic and covalent nitrate NO3. The complete desorption of adsorbed NO species occurred above 500°C in the Li silicate, above 500°C in the Ca and Ba silicates prepared using CH3Si(OC2H5)3, and above 700°C in the Ba and Ca silicates prepared using Si(OC2H5)4. Regarding the Ca and Ba silicates, the difference in siloxane structure is thought to cause the difference in adsorption state and desorption behavior of NO.

Keywords

silicates NOx sorbent solid acid-base properties hydrido-triethoxysilane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Bredikhin, K. Maeda, and M. Awano, J. Electrochem. Soc. 148, D133 (2001).Google Scholar
  2. 2.
    S. Bredikhin, K. Matsuda, K. Maeda, and M. Awano, Solid State Ionics 149, 327 (2002).Google Scholar
  3. 3.
    S. Bredikhin, K. Maeda, and M. Awano, Solid State Ionics 152/153, 727 (2002).Google Scholar
  4. 4.
    K. Matsuda, S. Bredikhin, K. Maeda, and M. Awano, Solid State Inonics 156, 223 (2003).Google Scholar
  5. 5.
    A. Aronin, G. Abroshimova, S. Bredikhin, K. Matsuda, K. Maeda, and M. Awano, J. Ceram. Soc. Jpn. 110, 722 (2003).Google Scholar
  6. 6.
    E. Fridell, H. Persson, B. Westerberg, L. Olsson, and M. Skoglundh, Catal. Lett. 66, 71 (2000).Google Scholar
  7. 7.
    L. Matzukuma, S. Kikuyama, R. Kikuchi, K. Sasaki, and K. Eguchi, Appl. Catal. B. Environ. 73, 107 (2002).Google Scholar
  8. 8.
    K. Tanabe, M. Misono, Y. Ono, and H. Hattori, in New Solid Acids and Bases, Their Catalytic Properties (Elsevier, Amsterdam, 1989) p. 93.Google Scholar
  9. 9.
    K. Tanabe, M. Misono, Y. Ono, and M. Hattori, in New Solid Acids and Bases, Their Catalytic Properties (Elsevier Amsterdam, 1989) p. 2.Google Scholar
  10. 10.
    S. Katayama, K. Iwata, Y. Kubo, and N. Yamada, J. Sol-Gel Sci. Tech. 26, 1 (2002).Google Scholar
  11. 11.
    S. Katayama, N. Yamada, and M. Awano, J. Eur. Ceram. Sci. 24, 421 (2004).Google Scholar
  12. 12.
    S. Katayama, N. Yamada, and M. Awano, J. Eur. Ceram. Sci. 24, 1957 (2004).Google Scholar
  13. 13.
    K. Tanabe, M. Misono, Y. Ono, and H. Hattori, in New Solid Acids and Bases, Their Catalytic Properties (Elsevier, Amsterdam, 1989) p. 25.Google Scholar
  14. 14.
    Y. Chi and S.C. Chuang, J. Catal. 150, 75 (2000).Google Scholar
  15. 15.
    K. Nakamoto, in Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd ed. (John Wiley & Sons, New York, 1978) p. 123.Google Scholar
  16. 16.
    R.A. Nyquist and R.O. Kagel, in Infrared Spectra of Inorganic Compounds (Academic Press, San Diego, CA, 1971) p. 10.Google Scholar
  17. 17.
    M.J.D. Low and R.T. Yang, J. Catal. 34, 479 (1974).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Shingo Katayama
    • 1
  • Noriko Yamada
    • 2
  • Masanobu Awano
    • 3
  1. 1.Synergy Ceramics LaboratoryFCRANagoyaJapan
  2. 2.Nippon Steel CorporationChibaJapan
  3. 3.Synergy Materials R.C.AISTNagoyaJapan

Personalised recommendations