Journal of Structural and Functional Genomics

, Volume 15, Issue 4, pp 209–214 | Cite as

Solution NMR structures of immunoglobulin-like domains 7 and 12 from obscurin-like protein 1 contribute to the structural coverage of the human cancer protein interaction network

  • Surya V. S. R. K. Pulavarti
  • Yuanpeng J. Huang
  • Kari Pederson
  • Thomas B. Acton
  • Rong Xiao
  • John K. Everett
  • James H. Prestegard
  • Gaetano T. Montelione
  • Thomas Szyperski
Article
  • 186 Downloads

Abstract

High-quality solution NMR structures of immunoglobulin-like domains 7 and 12 from human obscurin-like protein 1 were solved. The two domains share 30 % sequence identity and their structures are, as expected, rather similar. The new structures contribute to structural coverage of human cancer associated proteins. Mutations of Arg 812 in domain 7 cause the rare 3-M syndrome, and this site is located in a surface area predicted to be involved in protein–protein interactions.

Keywords

PF07679 Obscurin-like protein 1 Cytoskeletal adapter Ig-like domain Structural genomics 

Abbreviations

CUL7

Cullin7

CCDC8

Coiled-coil domain containing protein 8

DSS

4,4-Dimethyl-4-silapentane-1-sulfonate sodium salt

DTT

Dithiothreitol

FBXW8

Fbox and WD repeat containing protein 8

HCPIN

Human Cancer Pathway Interaction Network

Ig-like

Immunoglobulin-like

MES

2-(N-morpholino)ethanesulfonic acid

MAPK

Mitogen-activated protein kinase

NESG

Northeast Structural Genomics Consortium

NOESY

Nuclear Overhauser enhancement spectroscopy

OBSL1

Obscurin-like protein 1

PDB

Protein Data Bank

RDC

Residual dipolar coupling

RMSD

Root mean square deviation

TLR

Toll-like receptor

Tris

Tris(hydroxymethyl)aminomethane

Supplementary material

10969_2014_9185_MOESM1_ESM.pdf (710 kb)
Supplementary material 1 (PDF 710 kb)

References

  1. 1.
    Geisler SB, Robinson D, Hauringa M, Raeker MO, Borisov AB, Westfall MV, Russell MW (2007) Obscurin-like 1, OBSL1, is a novel cytoskeletal protein related to obscurin. Genomics 89:521–531PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Fukuzawa A, Lange S, Holt M, Vihola A, Carmignac V, Ferreiro A, Udd B, Gautel M (2008) Interactions with titin and myomesin target obscurin and obscurin-like 1 to the M-band—implications for hereditary myopathies. J Cell Sci 121:1841–1851Google Scholar
  3. 3.
    Litterman N, Ikeuchi Y, Gallardo G, O’Connell BC, Sowa ME, Gygi SP, Harper JW, Bonni A (2011) An OBSL1-Cul7 Fbxw8 ubiquitin ligase signaling mechanism regulates golgi morphology and dendrite patterning. PLoS Biol 9:e1001060PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Huber C, Fradin M, Edouard T, Le Merrer M, Alanay Y, Da Silva DB, David A, Hamamy H, van Hest L, Lund AM, Michaud J, Oley C, Patel C, Rajab A, Skidmore DL, Stewart H, Tauber M, Munnich A, Cormier-Daire V (2010) OBSL1 mutations in 3-M syndrome are associated with a modulation of IGFBP2 and IGFBP5 expression levels. Hum Mutat 31:20–26PubMedCrossRefGoogle Scholar
  5. 5.
    Hanson D, Murray PG, Sud A, Temtamy SA, Aglan M, Superti-Furga A, Holder SE, Urquhart J, Hilton E, Manson FDC, Scambler P, Black GCM, Clayton PE (2009) The primordial growth disorder 3-M syndrome connects ubiquitination to the cytoskeletal adaptor OBSL1. Am J Hum Genet 84:801–806PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Sasaki K, Okamoto N, Kosaki K, Yorifuji T, Shimokawa O, Mishima H, Yoshiura K, Harada N (2011) Maternal uniparental isodisomy and heterodisomy on chromosome 6 encompassing a CUL7 gene mutation causing 3 M syndrome. Clin Genet 80:478–483PubMedCrossRefGoogle Scholar
  7. 7.
    Hanson D, Murray PG, O’Sullivan J, Urquhart J, Daly S, Bhaskar SS, Biesecker LG, Skae M, Smith C, Cole T, Kirk J, Chandler K, Kingston H, Donnai D, Clayton PE, Black GC (2011) Exome sequencing identifies CCDC8 mutations in 3-M syndrome, suggesting that CCDC8 contributes in a pathway with CUL7 and OBSL1 to control human growth. Am J Hum Genet 89:148–153PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Clayton PE, Hanson D, Magee L, Murray PG, Saunders E, Abu-Amero SN, Moore GE, Black GCM (2012) Exploring the spectrum of 3-M syndrome, a primordial short stature disorder of disrupted ubiquitination. Clin Endocrinol 77:335–342CrossRefGoogle Scholar
  9. 9.
    Hanson D, Murray PG, Black GCM, Clayton PE (2011) The genetics of 3-M syndrome: unravelling a potential new regulatory growth pathway. Horm Res Paediatr 76:369–378PubMedCrossRefGoogle Scholar
  10. 10.
    Varjosalo M, Keskitalo S, Van Drogen A, Nurkkala H, Vichalkovski A, Aebersold R, Gstaiger M (2013) The protein interaction landscape of the human CMGC kinase group. Cell Rep 3:1306–1320PubMedCrossRefGoogle Scholar
  11. 11.
    Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer ELL, Eddy SR, Bateman A (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Sauer F, Vahokoski J, Song Y-H, Wilmanns M (2010) Molecular basis of the head-to-tail assembly of giant muscle proteins obscurin-like 1 and titin. EMBO Rep 11:534–540PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Pernigo S, Fukuzawa A, Bertz M, Holt M, Rief M, Steiner RA, Gautel M (2010) Structural insight into M-band assembly and mechanics from the titin-obscurin-like-1 complex. Proc Natl Acad Sci USA 107:2908–2913PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Bork P, Holm L, Sander C (1994) The immunoglobulin fold: structural classification, sequence patterns and common core. J Mol Biol 242:309–320PubMedGoogle Scholar
  16. 16.
    Huang YJ, Hang D, Lu LJ, Tong L, Gerstein MB, Montelione GT (2008) Targeting the human cancer pathway protein interaction network by structural genomics. Mol Cell Proteomics 7:2048–2060PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Xiao R, Anderson S, Aramini J, Belote R, Buchwald WA, Ciccosanti C, Conover K, Everett JK, Hamilton K, Huang YJ, Janjua H, Jiang M, Kornhaber GJ, Lee DY, Locke JY, Ma L-C, Maglaqui M, Mao L, Mitra S, Patel D, Rossi P, Sahdev S, Sharma S, Shastry R, Swapna GVT, Tong SN, Wang D, Wang H, Zhao L, Montelione GT, Acton TB (2010) The high-throughput protein sample production platform of the Northeast Structural Genomics Consortium. J Struct Biol 172:21–33PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Acton TB, Xiao R, Anderson S, Aramini J, Buchwald WA, Ciccosanti C, Conover K, Everett J, Hamilton K, Huang YJ, Janjua H, Kornhaber G, Lau J, Lee DY, Liu GH, Maglaqui M, Ma LC, Mao L, Patel D, Rossi P, Sahdev S, Shastry R, Swapna GVT, Tang YF, Tong SC, Wang DY, Wang H, Zhao L, Montelione GT (2011) Preparation of protein samples for NMR structure, function, and small-molecule screening studies. Methods Enzymol 493:21–60PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Acton TB, Gunsalus KC, Xiao R, Ma LC, Aramini J, Baran MC, Chiang Y-W, Climent T, Cooper B, Denissova NG, Douglas SM, Everett JK, Ho CK, Macapagal D, Rajan PK, Shastry R, Shih LY, Swapna GVT, Wilson M, Wu M, Gerstein M, Inouye M, Hunt JF, Montelione GT (2005) Robotic cloning and protein production platform of the Northeast Structural Genomics Consortium. Methods Enzymol 394:210–243PubMedCrossRefGoogle Scholar
  20. 20.
    Neri D, Szyperski T, Otting G, Senn H, Wuthrich K (1989) Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. Biochemistry 28:7510–7516PubMedCrossRefGoogle Scholar
  21. 21.
    Moseley HNB, Monleon D, Montelione GT (2001) Automatic determination of protein backbone resonance assignments from triple resonance nuclear magnetic resonance data. Methods Enzymol 339:91–108PubMedCrossRefGoogle Scholar
  22. 22.
    Zimmerman DE, Kulikowski CA, Huang YP, Feng WQ, Tashiro M, Shimotakahara S, Chien CY, Powers R, Montelione GT (1997) Automated analysis of protein NMR assignments using methods from artificial intelligence. J Mol Biol 269:592–610PubMedCrossRefGoogle Scholar
  23. 23.
    Moseley HNB, Sahota G, Montelione GT (2004) Assignment validation software suite for the evaluation and presentation of protein resonance assignment data. J Biomol NMR 28:341–355PubMedCrossRefGoogle Scholar
  24. 24.
    Huang YJ, Powers R, Montelione GT (2005) Protein NMR recall, precision, and F-measure scores (RPF scores): structure quality assessment measures based on information retrieval statistics. J Am Chem Soc 127:1665–1674PubMedCrossRefGoogle Scholar
  25. 25.
    Liu G, Shen Y, Atreya HS, Parish D, Shao Y, Sukumaran DK, Xiao R, Yee A, Lemak A, Bhattacharya A, Acton TA, Arrowsmith CH, Montelione GT, Szyperski T (2005) NMR data collection and analysis protocol for high-throughput protein structure determination. Proc Natl Acad Sci USA 102:10487–10492PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Guntert P, Mumenthaler C, Wuthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273:283–298PubMedCrossRefGoogle Scholar
  27. 27.
    Herrmann T, Güntert P, Wüthrich K (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319:209–227PubMedCrossRefGoogle Scholar
  28. 28.
    Huang YJ, Tejero R, Powers R, Montelione GT (2006) A topology-constrained distance network algorithm for protein structure determination from NOESY data. Proteins 62:587–603PubMedCrossRefGoogle Scholar
  29. 29.
    Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302PubMedCrossRefGoogle Scholar
  30. 30.
    Liu Y, Prestegard JH (2009) Measurement of one and two bond N–C couplings in large proteins by TROSY-based J-modulation experiments. J Magn Reson 200:109–118PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr Sect D Biol Crystallogr 54:905–921CrossRefGoogle Scholar
  32. 32.
    Bhattacharya A, Tejero R, Montelione GT (2007) Evaluating protein structures determined by structural genomics consortia. Proteins 66:778–795PubMedCrossRefGoogle Scholar
  33. 33.
    Holm L, Sander C (1995) Dali: a network tool for protein structure comparison. Trends Biochem Sci 20:478–480PubMedCrossRefGoogle Scholar
  34. 34.
    Zhang QC, Deng L, Fisher M, Guan J, Honig B, Petrey D (2011) PredUs: a web server for predicting protein interfaces using structural neighbors. Nucleic Acids Res 39:W283–W287PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Zhang QC, Petrey D, Norel R, Honig BH (2010) Protein interface conservation across structure space. Proc Natl Acad Sci USA 107:10896–10901PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Surya V. S. R. K. Pulavarti
    • 1
  • Yuanpeng J. Huang
    • 3
  • Kari Pederson
    • 2
  • Thomas B. Acton
    • 3
  • Rong Xiao
    • 3
  • John K. Everett
    • 3
  • James H. Prestegard
    • 2
  • Gaetano T. Montelione
    • 3
    • 4
  • Thomas Szyperski
    • 1
  1. 1.Department of ChemistryThe State University of New York at Buffalo and Northeast Structural Genomics ConsortiumBuffaloUSA
  2. 2.Complex Carbohydrate Research Center and Northeast Structural Genomics ConsortiumUniversity of GeorgiaAthensUSA
  3. 3.Center of Advanced Biotechnology and Medicine and Department of Molecular Biology and Biochemistry, RutgersThe State University of New Jersey and Northeast Structural Genomics ConsortiumPiscatawayUSA
  4. 4.Department of Biochemistry and Molecular BiologyRobert Wood Johnson Medical School, UMDNJPiscatawayUSA

Personalised recommendations