Journal of Structural and Functional Genomics

, Volume 15, Issue 4, pp 201–207 | Cite as

Solution NMR structures of homeodomains from human proteins ALX4, ZHX1, and CASP8AP2 contribute to the structural coverage of the Human Cancer Protein Interaction Network

  • Xianzhong Xu
  • Surya V. S. R. K. Pulavarti
  • Alexander Eletsky
  • Yuanpeng Janet Huang
  • Thomas B. Acton
  • Rong Xiao
  • John K. Everett
  • Gaetano T. Montelione
  • Thomas SzyperskiEmail author


High-quality solution NMR structures of three homeodomains from human proteins ALX4, ZHX1 and CASP8AP2 were solved. These domains were chosen as targets of a biomedical theme project pursued by the Northeast Structural Genomics Consortium. This project focuses on increasing the structural coverage of human proteins associated with cancer.


PF00046 Transcription factor Homeodomain Structural genomics 



Aristaless-like 4


Zinc fingers and homeoboxes protein 1


Caspase 8 associated protein 2




Human Cancer Pathway Interaction Network


4,4-Dimethyl-4-silapentane-1-sulfonate sodium salt




Northeast Structural Genomics Consortium


Nuclear Overhauser effect


Protein Data Bank


Root mean square deviation



This work was supported by the National Institutes of Health, Grant Number: U54 GM094597 (T.S. and G.T.M.).

Supplementary material

10969_2014_9184_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (PDF 1326 kb)


  1. 1.
    Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540PubMedGoogle Scholar
  2. 2.
    Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer ELL, Eddy SR, Bateman A (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Wilson D, Sheng G, Lecuit T, Dostatni N, Desplan C (1993) Cooperative dimerization of paired class homeo domains on DNA. Genes Dev 7:2120–2134PubMedCrossRefGoogle Scholar
  4. 4.
    Qu S, Tucker SC, Zhao Q, deCrombrugghe B, Wisdom R (1999) Physical and genetic interactions between Alx4 and Cart1. Development 126:359–369PubMedGoogle Scholar
  5. 5.
    Wuyts W, Cleiren E, Homfray T, Rasore-Quartino A, Vanhoenacker F, Van HW (2000) The ALX4 homeobox gene is mutated in patients with ossification defects of the skull (foramina parietalia permagna, OMIM 1685000). J Med Genet 37:916–920PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Kayserili H, Uz E, Niessen C, Vargel I, Alanay Y, Tuncbilek G, Yigit G, Uyguner O, Candan S, Okur H, Kaygin S, Balci S, Mavili E, Alikasifoglu M, Haase I, Wollnik B, Akarsu NA (2009) ALX4 dysfunction disrupts craniofacial and epidermal development. Hum Mol Genet 18:4357–4366PubMedCrossRefGoogle Scholar
  7. 7.
    Joshi PA, Chang H, Hamel PA (2006) Loss of Alx4, a stromally-restricted homeodomain protein, impairs mammary epithelial morphogenesis. Dev Biol 297:284–294PubMedCrossRefGoogle Scholar
  8. 8.
    Mavrogiannis LA, Antonopoulou I, Baxova A, Kutilek S, Kim CA, Sugayama SM, Salamanca A, Wall SA, Morriss-Kay GM, Wilkie AOM (2001) Haploinsufficiency of the human homeobox gene ALX4 causes skull ossification defects. Nature Genet 27:17–18PubMedCrossRefGoogle Scholar
  9. 9.
    Liu WB, Han F, Du XH, Jiang X, Li YH, Liu Y, Chen HQ, Ao L, Cui ZH, Cao J, Liu JY (2013) Epigenetic silencing of Aristaless-like homeobox-4, a potential tumor suppressor gene associated with lung cancer. Int J Cancer 134:1311–1322Google Scholar
  10. 10.
    Yu J, Zhu T, Wang Z, Zhang H, Qian Z, Xu H, Gao B, Wang W, Gu L, Meng J, Wang J, Feng X, Li Y, Yao X, Zhu J (2007) A novel set of DNA methylation markers in urine sediments for sensitive/specific detection of bladder cancer. Clin Cancer Res 13:7296–7304PubMedCrossRefGoogle Scholar
  11. 11.
    Chen HY, Zhu BH, Zhang CH, Yang DJ, Peng JJ, Chen JH, Liu FK, He YL (2012) High CpG island methylator phenotype is associated with lymph node metastasis and prognosis in gastric cancer. Cancer Sci 103:73–79PubMedCrossRefGoogle Scholar
  12. 12.
    Ebert MP, Model F, Mooney S, Hale K, Lograsso J, Tonnes-Priddy L, Hoffmann J, Csepregi A, Rocken C, Molnar B, Schulz HU, Malfertheiner P, Lofton-Day C (2006) Aristaless-like homeobox-4 gene methylation is a potential marker for colorectal adenocarcinomas. Gastroenterology 131:1418–1430PubMedCrossRefGoogle Scholar
  13. 13.
    Tanzer M, Balluff B, Distler J, Hale K, Leodolter A, Rocken C, Molnar B, Schmid R, Lofton-Day C, Schuster T, Ebert MP (2010) Performance of epigenetic markers SEPT9 and ALX4 in plasma for detection of colorectal precancerous lesions. PLoS ONE 5:e9061PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Zou H, Harrington JJ, Shire AM, Rego RL, Wang L, Campbell ME, Oberg AL, Ahlquist DA (2007) Highly methylated genes in colorectal neoplasia: implications for screening. Cancer Epidemiol Biomark Prev 16:2686–2696CrossRefGoogle Scholar
  15. 15.
    Chang H, Mohabir N, Done S, Hamel PA (2009) Loss of ALX4 expression in epithelial cells and adjacent stromal cells in breast cancer. J Clin Pathol 62:908–914PubMedCrossRefGoogle Scholar
  16. 16.
    Yamada K, Printz RL, Osawa H, Granner DK (1999) Human ZHX1: cloning, chromosomal location, and interaction with transcription factor NF-Y. Biochem Biophys Res Commun 261:614–621PubMedCrossRefGoogle Scholar
  17. 17.
    Chen S, Yu X, Lei Q, Ma L, Guo D (2013) The SUMOylation of zinc-fingers and homeoboxes 1 (ZHX1) by Ubc9 regulates its stability and transcriptional repression activity. J Cell Biochem 114:2323–2333PubMedCrossRefGoogle Scholar
  18. 18.
    Kim SH, Park J, Choi MC, Kim HP, Park JH, Jung Y, Lee JH, Oh DY, Im SA, Bang YJ, Kim TY (2007) Zinc-fingers and homeoboxes 1 (ZHX1) binds DNA methyltransferase (DNMT) 3B to enhance DNMT3B-mediated transcriptional repression. Biochem Biophys Res Commun 355:318–323PubMedCrossRefGoogle Scholar
  19. 19.
    Yamada K, Osawa H, Granner DK (1999) Identification of proteins that interact with NF-YA. FEBS Lett 460:41–45PubMedCrossRefGoogle Scholar
  20. 20.
    Clement LC, Liu G, Perez-Torres I, Kanwar YS, Avila-Casado C, Chugh SS (2007) Early changes in gene expression that influence the course of primary glomerular disease. Kidney Int 72:337–347PubMedCrossRefGoogle Scholar
  21. 21.
    Liu G, Clement LC, Kanwar YS, Avila-Casado C, Chugh SS (2006) ZHX proteins regulate podocyte gene expression during the development of nephrotic syndrome. J Biol Chem 281:39681–39692PubMedCrossRefGoogle Scholar
  22. 22.
    Iuchi S (2001) Three classes of C2H2 zinc finger proteins. Cell Mol Life Sci 58:625–635PubMedCrossRefGoogle Scholar
  23. 23.
    Yamada K, Kawata H, Matsuura K, Shou Z, Hirano S, Mizutani T, Yazawa T, Yoshino M, Sekiguchi T, Kajitani T, Miyamoto K (2002) Functional analysis and the molecular dissection of zinc-fingers and homeoboxes 1 (ZHX1). Biochem Biophys Res Commun 297:368–374PubMedCrossRefGoogle Scholar
  24. 24.
    Yamada K, Kawata H, Shou Z, Hirano S, Mizutani T, Yazawa T, Sekiguchi T, Yoshino M, Kajitani T, Miyamoto K (2003) Analysis of zinc-fingers and homeoboxes (ZHX)-1-interacting proteins: molecular cloning and characterization of a member of the ZHX family, ZHX3. Biochem J 373:167–178PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Wienk H, Lammers I, Hotze A, Wu J, Wechselberger RW, Owens R, Stammers DK, Stuart D, Kaptein R, Folkers GE (2009) The tandem zinc-finger region of human ZHX adopts a novel C2H2 zinc finger structure with a C-terminal extension. Biochemistry 48:4431–4439PubMedCrossRefGoogle Scholar
  26. 26.
    Bird L, Ren J, Nettleship J, Folkers G, Owens R, Stammers D (2010) Novel structural features in two ZHX homeodomains derived from a systematic study of single and multiple domains. BMC Struct Biol 10:13PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Kino T, Ichijo T, Chrousos GP (2004) FLASH interacts with p160 coactivator subtypes and differentially suppresses transcriptional activity of steroid hormone receptors. J Steroid Biochem Mol Biol 92:357–363PubMedCrossRefGoogle Scholar
  28. 28.
    Barcaroli D, Bongiorno-Borbone L, Terrinoni A, Hofmann TG, Rossi M, Knight RA, Matera AG, Melino G, De Laurenzi V (2006) FLASH is required for histone transcription and S-phase progression. Proc Natl Acad Sci USA 103:14808–14812PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Milovic-Holm K, Krieghoff E, Jensen K, Will H, Hofmann TG (2007) FLASH links the CD95 signaling pathway to the cell nucleus and nuclear bodies. EMBO J 26:391–401PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Jiao Y, Cui L, Gao C, Li W, Zhao X, Liu S, Wu M, Deng G, Li Z (2012) CASP8AP2 is a promising prognostic indicator in pediatric acute lymphoblastic leukemia. Leuk Res 36:67–71PubMedCrossRefGoogle Scholar
  31. 31.
    Flotho C, Coustan-Smith E, Pei D, Iwamoto S, Song G, Cheng C, Pui CH, Downing JR, Campana D (2006) Genes contributing to minimal residual disease in childhood acute lymphoblastic leukemia: prognostic significance of CASP8AP2. Blood 108:1050–1057PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Kiriyama M, Kobayashi Y, Saito M, Ishikawa F, Yonehara S (2009) Interaction of FLASH with arsenite resistance protein 2 is involved in cell cycle progression at S phase. Mol Cell Biol 29:4729–4741PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Kino T, Chrousos GP (2003) Tumor necrosis factor alpha receptor- and Fas-associated FLASH inhibit transcriptional activity of the glucocorticoid receptor by binding to and interfering with its interaction with p160 type nuclear receptor coactivators. J Biol Chem 278:3023–3029PubMedCrossRefGoogle Scholar
  34. 34.
    Huang YJ, Hang D, Lu LJ, Tong L, Gerstein MB, Montelione GT (2008) Targeting the human cancer pathway protein interaction network by structural genomics. Mol Cell Proteomics 7:2048–2060PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Acton TB, Gunsalus KC, Xiao R, Ma LC, Aramini J, Baran MC, Chiang YW, Climent T, Cooper B, Denissova NG, Douglas SM, Everett JK, Ho CK, Macapagal D, Rajan PK, Shastry R, Shih LY, Swapna GVT, Wilson M, Wu M, Gerstein M, Inouye M, Hunt JF, Montelione GT (2005) Robotic cloning and protein production platform of the Northeast Structural Genomics Consortium. Methods Enzymol 394:210–243PubMedCrossRefGoogle Scholar
  36. 36.
    Acton TB, Xiao R, Anderson S, Aramini J, Buchwald WA, Ciccosanti C, Conover K, Everett J, Hamilton K, Huang YJ, Janjua H, Kornhaber G, Lau J, Lee DY, Liu GH, Maglaqui M, Ma LC, Mao L, Patel D, Rossi P, Sahdev S, Shastry R, Swapna GVT, Tang YF, Tong SC, Wang DY, Wang H, Zhao L, Montelione GT (2011) Preparation of protein samples for NMR structure, function, and small-molecule screening studies. Methods Enzymol 493:21–60PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Xiao R, Anderson S, Aramini J, Belote R, Buchwald WA, Ciccosanti C, Conover K, Everett JK, Hamilton K, Huang YJ, Janjua H, Jiang M, Kornhaber GJ, Lee DY, Locke JY, Ma LC, Maglaqui M, Mao L, Mitra S, Patel D, Rossi P, Sahdev S, Sharma S, Shastry R, Swapna GVT, Tong SN, Wang D, Wang H, Zhao L, Montelione GT, Acton TB (2010) The high-throughput protein sample production platform of the Northeast Structural Genomics Consortium. J Struct Biol 172:21–33PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Neri D, Szyperski T, Otting G, Senn H, Wuthrich K (1989) Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. Biochemistry 28:7510–7516PubMedCrossRefGoogle Scholar
  39. 39.
    Moseley HNB, Monleon D, Montelione GT (2001) Automatic determination of protein backbone resonance assignments from triple resonance nuclear magnetic resonance data. Methods Enzymol 339:91–108PubMedCrossRefGoogle Scholar
  40. 40.
    Zimmerman DE, Kulikowski CA, Huang YP, Feng WQ, Tashiro M, Shimotakahara S, Chien CY, Powers R, Montelione GT (1997) Automated analysis of protein NMR assignments using methods from artificial intelligence. J Mol Biol 269:592–610PubMedCrossRefGoogle Scholar
  41. 41.
    Huang YJ, Powers R, Montelione GT (2005) Protein NMR recall, precision, and F-measure scores (RPF scores): structure quality assessment measures based on information retrieval statistics. J Am Chem Soc 127:1665–1674PubMedCrossRefGoogle Scholar
  42. 42.
    Liu G, Shen Y, Atreya HS, Parish D, Shao Y, Sukumaran DK, Xiao R, Yee A, Lemak A, Bhattacharya A, Acton TA, Arrowsmith CH, Montelione GT, Szyperski T (2005) NMR data collection and analysis protocol for high-throughput protein structure determination. Proc Natl Acad Sci USA 102:10487–10492PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Güntert P, Mumenthaler C, Wüthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273:283–298PubMedCrossRefGoogle Scholar
  44. 44.
    Herrmann T, Güntert P, Wüthrich K (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319:209–227PubMedCrossRefGoogle Scholar
  45. 45.
    Huang YJ, Tejero R, Powers R, Montelione GT (2006) A topology-constrained distance network algorithm for protein structure determination from NOESY data. Proteins 62:587–603PubMedCrossRefGoogle Scholar
  46. 46.
    Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302PubMedCrossRefGoogle Scholar
  47. 47.
    Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr Sect D: Biol Crystallogr 54:905–921CrossRefGoogle Scholar
  48. 48.
    Bhattacharya A, Tejero R, Montelione GT (2007) Evaluating protein structures determined by structural genomics consortia. Proteins 66:778–795PubMedCrossRefGoogle Scholar
  49. 49.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Gehring WJ, Affolter M, Burglin T (1994) Homeodomain proteins. Annu Rev Biochem 63:487–526PubMedCrossRefGoogle Scholar
  51. 51.
    Holm L, Sander C (1995) Dali: a network tool for protein structure comparison. Trends Biochem Sci 20:478–480PubMedCrossRefGoogle Scholar
  52. 52.
    Miyazono K, Zhi Y, Takamura Y, Nagata K, Saigo K, Kojima T, Tanokura M (2010) Cooperative DNA-binding and sequence-recognition mechanism of aristaless and clawless. The EMBO Journal 29:1613–1623PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Tucker SC, Wisdom R (1999) Site-specific heterodimerization by paired-class homeodomain proteins mediates selective transcriptional responses. J Biol Chem 274:32325–32332PubMedCrossRefGoogle Scholar
  54. 54.
    Kojima T, Tsuji T, Saigo K (2005) A concerted action of a paired-type homeobox gene, aristaless, and a homolog of Hox11/tlx homeobox gene, clawless, is essential for the distal tip development of the Drosophila leg. Dev Biol 279:434–445PubMedCrossRefGoogle Scholar
  55. 55.
    Stark MR, Johnson AD (1994) Interaction between two homeodomain proteins is specified by a short C-terminal tail. Nature 371:429–432PubMedCrossRefGoogle Scholar
  56. 56.
    Moseley HNB, Sahota G, Montelione GT (2004) Assignment validation software suite for the evaluation and presentation of protein resonance assignment data. J Biomol NMR 28:341–355PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Xianzhong Xu
    • 1
  • Surya V. S. R. K. Pulavarti
    • 1
  • Alexander Eletsky
    • 1
  • Yuanpeng Janet Huang
    • 2
  • Thomas B. Acton
    • 2
  • Rong Xiao
    • 2
  • John K. Everett
    • 2
  • Gaetano T. Montelione
    • 2
    • 3
  • Thomas Szyperski
    • 1
    Email author
  1. 1.Department of ChemistryThe State University of New York at Buffalo and Northeast Structural Genomics ConsortiumBuffaloUSA
  2. 2.Center of Advanced Biotechnology and Medicine and Department of Molecular Biology and BiochemistryRutgers, The State University of New Jersey and Northeast Structural Genomics ConsortiumPiscatawayUSA
  3. 3.Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical SchoolUMDNJPiscatawayUSA

Personalised recommendations