Journal of Structural and Functional Genomics

, Volume 14, Issue 4, pp 155–160 | Cite as

Solution NMR structure of CD1104B from pathogenic Clostridium difficile reveals a distinct α-helical architecture and provides first structural representative of protein domain family PF14203

  • Surya V. S. R. K. Pulavarti
  • Alexander Eletsky
  • Hsiau-Wei Lee
  • Thomas B. Acton
  • Rong Xiao
  • John K. Everett
  • James H. Prestegard
  • Gaetano T. Montelione
  • Thomas Szyperski
Article

Abstract

A high-quality structure of the 68-residue protein CD1104B from Clostridium difficile strain 630 exhibits a distinct all α-helical fold. The structure presented here is the first representative of bacterial protein domain family PF14203 (currently 180 members) of unknown function (DUF4319) and reveals that the side-chains of the only two strictly conserved residues (Glu 8 and Lys 48) form a salt bridge. Moreover, these two residues are located in the vicinity of the largest surface cleft which is predicted to contribute to a surface area involved in protein–protein interactions. This, along with its coding in transposon CTn4, suggests that CD1104B (and very likely all members of Pfam 14203) functions by interacting with other proteins required for the transfer of transposons between different bacterial species.

Keywords

CD1104B PF14203 DUF4319 Transposon Structural genomics 

Abbreviations

ABC

ATP-binding cassette

CD

Clostridium difficile

CTn

Conjugative transposon

DSS

4,4-dimethyl-4-silapentane-1-sulfonate sodium salt

DTT

Dithiothreitol

DUF

Domain of unknown function

MES

2-(N-morpholino)ethanesulfonic acid

NESG

Northeast Structural Genomics Consortium

NOE

Nuclear overhauser effect

PDB

Protein data bank

RDC

Residual dipolar coupling

RMSD

Root mean square deviation

Supplementary material

10969_2013_9164_MOESM1_ESM.pdf (865 kb)
Supplementary material 1 (PDF 865 kb)

References

  1. 1.
    He M, Miyajima F, Roberts P, Ellison L, Pickard DJ, Martin MJ, Connor TR, Harris SR, Fairley D, Bamford KB, D’Arc S, Brazier J, Brown D, Coia JE, Douce G, Gerding D, Kim HJ, Koh TH, Kato H, Senoh M, Louie T, Michell S, Butt E, Peacock SJ, Brown NM, Riley T, Songer G, Wilcox M, Pirmohamed M, Kuijper E, Hawkey P, Wren BW, Dougan G, Parkhill J, Lawley TD (2013) Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet 45:109–113PubMedCrossRefGoogle Scholar
  2. 2.
    Brouwer MSM, Warburton PJ, Roberts AP, Mullany P, Allan E (2011) Genetic organisation, mobility and predicted functions of genes on integrated, mobile genetic elements in sequenced strains of Clostridium difficile. PLoS ONE 6:e23014PubMedCrossRefGoogle Scholar
  3. 3.
    Sebaihia M, Wren BW, Mullany P, Fairweather NF, Minton N, Stabler R, Thomson NR, Roberts AP, Cerdeno-Tarraga AM, Wang H, Holden MTG, Wright A, Churcher C, Quail MA, Baker S, Bason N, Brooks K, Chillingworth T, Cronin A, Davis P, Dowd L, Fraser A, Feltwell T, Hance Z, Holroyd S, Jagels K, Moule S, Mungall K, Price C, Rabbinowitsch E, Sharp S, Simmonds M, Stevens K, Unwin L, Whithead S, Dupuy B, Dougan G, Barrell B, Parkhill J (2006) The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 38:779–786PubMedCrossRefGoogle Scholar
  4. 4.
    Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer ELL, Eddy SR, Bateman A (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222PubMedCrossRefGoogle Scholar
  5. 5.
    Dessailly BH, Nair R, Jaroszewski L, Fajardo JE, Kouranov A, Lee D, Fiser A, Godzik A, Rost B, Orengo C (2009) PSI-2: structural genomics to cover protein domain family space. Structure 17:869–881PubMedCrossRefGoogle Scholar
  6. 6.
    Liu JF, Montelione GT, Rost B (2007) Novel leverage of structural genomics. Nat Biotechnol 25:850–853Google Scholar
  7. 7.
    Acton TB, Gunsalus KC, Xiao R, Ma LC, Aramini J, Baran MC, Chiang Y-W, Climent T, Cooper B, Denissova NG, Douglas SM, Everett JK, Ho CK, Macapagal D, Rajan PK, Shastry R, Shih LY, Swapna GVT, Wilson M, Wu M, Gerstein M, Inouye M, Hunt JF, Montelione GT (2005) Robotic cloning and protein production platform of the Northeast Structural Genomics Consortium. Methods Enzymol 394:210–243PubMedCrossRefGoogle Scholar
  8. 8.
    Acton TB, Xiao R, Anderson S, Aramini J, Buchwald WA, Ciccosanti C, Conover K, Everett J, Hamilton K, Huang YJ, Janjua H, Kornhaber G, Lau J, Lee DY, Liu GH, Maglaqui M, Ma LC, Mao L, Patel D, Rossi P, Sahdev S, Shastry R, Swapna GVT, Tang YF, Tong SC, Wang DY, Wang H, Zhao L, Montelione GT (2011) Preparation of protein samples for NMR structure, function, and small-molecule screening studies. Fragment-based drug design: tools, practical approaches, and examples. Methods Enzymol 493:21–60Google Scholar
  9. 9.
    Xiao R, Anderson S, Aramini J, Belote R, Buchwald WA, Ciccosanti C, Conover K, Everett JK, Hamilton K, Huang YJ, Janjua H, Jiang M, Kornhaber GJ, Lee DY, Locke JY, Ma L-C, Maglaqui M, Mao L, Mitra S, Patel D, Rossi P, Sahdev S, Sharma S, Shastry R, Swapna GVT, Tong SN, Wang D, Wang H, Zhao L, Montelione GT, Acton TB (2010) The high-throughput protein sample production platform of the Northeast Structural Genomics Consortium. J Struct Biol 172:21–33PubMedCrossRefGoogle Scholar
  10. 10.
    Neri D, Szyperski T, Otting G, Senn H, Wuthrich K (1989) Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. Biochemistry 28:7510–7516PubMedCrossRefGoogle Scholar
  11. 11.
    Kim S, Szyperski T (2003) GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. J Am Chem Soc 125:1385–1393PubMedCrossRefGoogle Scholar
  12. 12.
    Moseley HNB, Monleon D, Montelione GT (2001) Automatic determination of protein backbone resonance assignments from triple resonance nuclear magnetic resonance data. Nuclear Magnetic Resonance of Biological Macromolecules, Pt B. Methods Enzymol 339:91–108Google Scholar
  13. 13.
    Zimmerman DE, Kulikowski CA, Huang YP, Feng WQ, Tashiro M, Shimotakahara S, Chien CY, Powers R, Montelione GT (1997) Automated analysis of protein NMR assignments using methods from artificial intelligence. J Mol Biol 269:592–610PubMedCrossRefGoogle Scholar
  14. 14.
    Moseley HNB, Sahota G, Montelione GT (2004) Assignment validation software suite for the evaluation and presentation of protein resonance assignment data. J Biomol NMR 28:341–355PubMedCrossRefGoogle Scholar
  15. 15.
    Huang YJ, Powers R, Montelione GT (2005) Protein NMR recall, precision, and F-measure scores (RPF scores): structure quality assessment measures based on information retrieval statistics. J Am Chem Soc 127:1665–1674PubMedCrossRefGoogle Scholar
  16. 16.
    Liu G, Shen Y, Atreya HS, Parish D, Shao Y, Sukumaran DK, Xiao R, Yee A, Lemak A, Bhattacharya A, Acton TA, Arrowsmith CH, Montelione GT, Szyperski T (2005) NMR data collection and analysis protocol for high-throughput protein structure determination. Proc Natl Acad Sci USA 102:10487–10492PubMedCrossRefGoogle Scholar
  17. 17.
    Guntert P, Mumenthaler C, Wuthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273:283–298PubMedCrossRefGoogle Scholar
  18. 18.
    Herrmann T, Guntert P, Wuthrich K (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319:209–227PubMedCrossRefGoogle Scholar
  19. 19.
    Huang YJ, Tejero R, Powers R, Montelione GT (2006) A topology-constrained distance network algorithm for protein structure determination from NOESY data. Proteins 62:587–603PubMedCrossRefGoogle Scholar
  20. 20.
    Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302PubMedCrossRefGoogle Scholar
  21. 21.
    Liu Y, Prestegard JH (2009) Measurement of one and two bond N–C couplings in large proteins by TROSY-based J-modulation experiments. J Magn Reson 200:109–118PubMedCrossRefGoogle Scholar
  22. 22.
    Linge JP, Williams MA, Spronk C, Bonvin A, Nilges M (2003) Refinement of protein structures in explicit solvent. Proteins 50:496–506PubMedCrossRefGoogle Scholar
  23. 23.
    Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr Sect D Biol Crystallogr 54:905–921CrossRefGoogle Scholar
  24. 24.
    Bhattacharya A, Tejero R, Montelione GT (2007) Evaluating protein structures determined by structural genomics consortia. Proteins 66:778–795PubMedCrossRefGoogle Scholar
  25. 25.
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  26. 26.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242PubMedCrossRefGoogle Scholar
  27. 27.
    Holm L, Sander C (1995) Dali: a network tool for protein structure comparison. Trends Biochem Sci 20:478–480PubMedCrossRefGoogle Scholar
  28. 28.
    Nayal M, Honig B (2006) On the nature of cavities on protein surfaces: application to the identification of drug-binding sites. Proteins 63:892–906PubMedCrossRefGoogle Scholar
  29. 29.
    Petrey D, Fischer M, Honig B (2009) Structural relationships among proteins with different global topologies and their implications for function annotation strategies. Proc Natl Acad Sci U S A 106:17377–17382PubMedCrossRefGoogle Scholar
  30. 30.
    Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N (2010) ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 38:W529–W533PubMedCrossRefGoogle Scholar
  31. 31.
    Xu D, Tsai CJ, Nussinov R (1997) Hydrogen bonds and salt bridges across protein–protein interfaces. Protein Eng 10:999–1012PubMedCrossRefGoogle Scholar
  32. 32.
    Laskowski RA, Watson JD, Thornton JM (2005) ProFunc: a server for predicting protein function from 3D structure. Nucleic Acids Res 33:W89–W93PubMedCrossRefGoogle Scholar
  33. 33.
    Zhang QC, Deng L, Fisher M, Guan J, Honig B, Petrey D (2011) PredUs: a web server for predicting protein interfaces using structural neighbors. Nucleic Acids Res 39:W283–W287PubMedCrossRefGoogle Scholar
  34. 34.
    Zhang QC, Petrey D, Norel R, Honig BH (2010) Protein interface conservation across structure space. Proc Natl Acad Sci U S A 107:10896–10901PubMedCrossRefGoogle Scholar
  35. 35.
    Nair R, Liu J, Soong T–T, Acton TB, Everett JK, Kouranov A, Fiser A, Godzik A, Jaroszewski L, Orengo C, Montelione GT, Rost B (2009) Structural genomics is the largest contributor of novel structural leverage. J Struct Funct Genomics 10:181–191PubMedCrossRefGoogle Scholar
  36. 36.
    Bhattacharya A, Tejero R, Montelione GT (2007) Evaluating protein structures determined by structural genomics consortia. Proteins 66:778–795PubMedCrossRefGoogle Scholar
  37. 37.
    Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539Google Scholar
  38. 38.
    Gouet P, Robert X, Courcelle E (2003) ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res 31:3320–3323PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Surya V. S. R. K. Pulavarti
    • 1
  • Alexander Eletsky
    • 1
  • Hsiau-Wei Lee
    • 2
    • 3
  • Thomas B. Acton
    • 4
  • Rong Xiao
    • 4
  • John K. Everett
    • 4
  • James H. Prestegard
    • 2
  • Gaetano T. Montelione
    • 5
  • Thomas Szyperski
    • 1
  1. 1.Department of ChemistryThe State University of New York at Buffalo and Northeast Structural Genomics ConsortiumBuffaloUSA
  2. 2.Complex Carbohydrate Research CenterUniversity at Georgia and Northeast Structural Genomics ConsortiumAthensUSA
  3. 3.Department of Chemistry and BiochemistryUniversity of California-Santa CruzSanta CruzUSA
  4. 4.Department of Molecular Biology and Biochemistry, Center of Advanced Biotechnology and Medicine, RutgersThe State University of New Jersey and Northeast Structural Genomics ConsortiumPiscatawayUSA
  5. 5.Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical SchoolUMDNJPiscatawayUSA

Personalised recommendations