Solution NMR structure of the helicase associated domain BVU_0683(627–691) from Bacteroides vulgatus provides first structural coverage for protein domain family PF03457 and indicates domain binding to DNA

  • Jeffrey L. Mills
  • Thomas B. Acton
  • Rong Xiao
  • John K. Everett
  • Gaetano T. Montelione
  • Thomas Szyperski
Article
  • 231 Downloads

Abstract

A high-quality NMR structure of the helicase associated (HA) domain comprising residues 627–691 of the 753-residue protein BVU_0683 from Bacteroides vulgatus exhibits an all α-helical fold. The structure presented here is the first representative for the large protein domain family PF03457 (currently 742 members) of HA domains. Comparison with structurally similar proteins supports the hypothesis that HA domains bind to DNA and that binding specificity varies greatly within the family of HA domains constituting PF03457.

Keywords

A6KY75_BACV8 BVU_0683 PF03457 Helicase associated domain Structural genomics SANT domain 

Abbreviations

DNA

Deoxyribonucleic acid

DSS

4,4-dimethyl-4-silapentane-1-sulfonate sodium salt

DTT

Dithiothreitol

HA

Helicase associated

ISW

Imitation switch

MES

2-(N-morpholino)ethanesulfonic acid

NESG

Northeast structural genomics consortium

NOE

Nuclear overhauser effect

PDB

Protein data bank

RMSD

Root mean square deviation

SANT

SWI3, ADA2, N-CoR, and TFIIIB

Supplementary material

10969_2012_9148_MOESM1_ESM.doc (3.7 mb)
Supplementary material 1 (DOC 3,789 kb). The online version of this article contains supplementary material, which is available to authorized users

References

  1. 1.
    Singleton MR, Dillingham MS, Wigley DB (2007) Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 76:23–50PubMedCrossRefGoogle Scholar
  2. 2.
    Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer EL, Bateman A (2006) PFam: clans, web tools and services. Nucleic Acids Res 34:247–251CrossRefGoogle Scholar
  3. 3.
    Yeats C, Bentley S, Bateman A (2003) New knowledge from old: in silico discovery of novel protein domains in Streptomyces coelicolor. BMC Microbiol 3:3PubMedCrossRefGoogle Scholar
  4. 4.
    Dessailly BH, Nair R, Jaroszewski L, Fajardo JE, Kouranov A, Lee D, Fiser A, Godzik A, Rost B, Orengo C (2009) PSI-2: structural genomics to cover protein domain family space. Structure 17:869–881PubMedCrossRefGoogle Scholar
  5. 5.
    Liu J, Montelione GT, Rost B (2007) Novel leverage of structural genomics. Nat Biotechnol 25:849–851PubMedCrossRefGoogle Scholar
  6. 6.
    Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540PubMedGoogle Scholar
  7. 7.
    Acton TB, Gunsalus KC, Xiao R, Ma LC, Aramini J, Baran MC, Chiang YW, Climent T, Cooper B, Denissova NG, Douglas SM, Everett JK, Ho CK, Macapagal D, Rajan PK, Shastry R, Shih LY, Swapna GV, Wilson M, Wu M, Gerstein M, Inouye M, Hunt JF, Montelione GT (2005) Robotic cloning and protein production platform of the Northeast Structural Genomics Consortium. Methods Enzymol 394:210–243PubMedCrossRefGoogle Scholar
  8. 8.
    Xiao R, Anderson S, Aramini J, Belote R, Buchwald WA, Ciccosanti C, Conover K, Everett JK, Hamilton K, Huang YJ, Janjua H, Jiang M, Kornhaber GJ, Lee DY, Locke JY, Ma LC, Maglaqui M, Mao L, Mitra S, Patel D, Rossi P, Sahdev S, Sharma S, Shastry R, Swapna GVT, Tong SN, Wang D, Wang H, Zhao L, Montelione GT, Acton TB (2010) The high-throughput protein sample production platform of the Northeast structural genomics consortium. J Struct Biol 172:21–33PubMedCrossRefGoogle Scholar
  9. 9.
    Moseley HN, Monleon D, Montelione GT (2001) Automatic determination of protein backbone resonance assignments from triple resonance nuclear magnetic resonance data. Methods Enzymol 339:91–108PubMedCrossRefGoogle Scholar
  10. 10.
    Zimmerman DE, Kulikowski CA, Huang Y, Feng W, Tashiro M, Shimotakahara S, Chien C, Powers R, Montelione GT (1997) Automated analysis of protein NMR assignments using methods from artificial intelligence. J Mol Biol 269:592–610PubMedCrossRefGoogle Scholar
  11. 11.
    Güntert P, Mumenthaler C, Wüthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273:283–298PubMedCrossRefGoogle Scholar
  12. 12.
    Herrmann T, Güntert P, Wüthrich K (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319:209–227PubMedCrossRefGoogle Scholar
  13. 13.
    Huang YJ, Moseley HN, Baran MC, Arrowsmith C, Powers R, Tejero R, Szyperski T, Montelione GT (2005) An integrated platform for automated analysis of protein NMR structures. Methods Enzymol 394:111–141PubMedCrossRefGoogle Scholar
  14. 14.
    Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223PubMedCrossRefGoogle Scholar
  15. 15.
    Linge JP, Williams MA, Spronk CA, Bonvin AM, Nilges M (2003) Refinement of protein structures in explicit solvent. Proteins 50:496–506PubMedCrossRefGoogle Scholar
  16. 16.
    Brünger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921PubMedCrossRefGoogle Scholar
  17. 17.
    Bhattacharya A, Tejero R, Montelione GT (2007) Evaluating protein structures determined by structural genomics consortia. Proteins 66:778–795PubMedCrossRefGoogle Scholar
  18. 18.
    Huang YJ, Powers R, Montelione GT (2005) Protein NMR recall, precision, and F-measure scores (RPF scores): structure quality assessment measures based on information retrieval statistics. J Am Chem Soc 127:1665–1674PubMedCrossRefGoogle Scholar
  19. 19.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242PubMedCrossRefGoogle Scholar
  20. 20.
    Holm L, Sander C (1995) Dali: a network tool for protein structure comparison. Trends Biochem Sci 20:478–480PubMedCrossRefGoogle Scholar
  21. 21.
    Tong Y, Hota PK, Penachioni JY, Hamaneh MB, Kim S, Alviani RS, Shen L, He H, Tempel W, Tamagnone L, Park HW, Buck M (2009) Structure and function of the intracellular region of the plexin-b1 transmembrane receptor. PDB ID: 3HM6. doi:10.2210/pdb3hm6/pdb
  22. 22.
    Zhao H, Finch CJ, Sequeira RD, Johnson BA, Johnson JE, Casjens SR, Tang L (2009) Crystal structure of the bacteriophage Sf6 terminase small subunit. PDB ID: 3HEF. doi:10.2210/pdb3hef/pdb
  23. 23.
    Zhao H, Finch CJ, Sequeira RD, Johnson BA, Johnson JE, Casjens SR, Tang L (2010) Crystal structure of the DNA-recognition component of the bacterial virus Sf6 genome-packaging machine. Proc Natl Acad Sci USA 107:1971–1976PubMedCrossRefGoogle Scholar
  24. 24.
    Yamada K, Frouws TD, Angst B, Fitzgerald DJ, DeLuca C, Schimmele K, Sargent DF, Richmond TJ (2011) Structure and mechanism of the chromatin remodelling factor ISW1a. Nature 472:448–453PubMedCrossRefGoogle Scholar
  25. 25.
    Nair R, Liu J, Soong TT, Acton TB, Everett JK, Kouranov A, Fiser A, Godzik A, Jaroszewski L, Orengo C, Montelione GT, Rost B (2009) Structural genomics is the largest contributor of novel structural leverage. J Struct Funct Genomics 10:181–191PubMedCrossRefGoogle Scholar
  26. 26.
    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedCrossRefGoogle Scholar
  27. 27.
    Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113PubMedCrossRefGoogle Scholar
  28. 28.
    Li W, Godzik A (2006) CD-HIT: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659PubMedCrossRefGoogle Scholar
  29. 29.
    Huang Y, Niu B, Gao Y, Fu L, Li W (2010) CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26:680–682PubMedCrossRefGoogle Scholar
  30. 30.
    Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N (2010) ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 38:W529–W533PubMedCrossRefGoogle Scholar
  31. 31.
    Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224PubMedCrossRefGoogle Scholar
  32. 32.
    Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486PubMedCrossRefGoogle Scholar
  33. 33.
    Lovell SC, Davis IW, Arendall WB 3rd, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins 50:437–450PubMedCrossRefGoogle Scholar
  34. 34.
    Luthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356:83–85PubMedCrossRefGoogle Scholar
  35. 35.
    Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17:355–362PubMedCrossRefGoogle Scholar
  36. 36.
    Moseley HN, Sahota G, Montelione GT (2004) Assignment validation software suite for the evaluation and presentation of protein resonance assignment data. J Biomol NMR 28:341–355PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Jeffrey L. Mills
    • 1
  • Thomas B. Acton
    • 2
  • Rong Xiao
    • 2
  • John K. Everett
    • 2
  • Gaetano T. Montelione
    • 2
    • 3
  • Thomas Szyperski
    • 1
  1. 1.Department of ChemistryThe State University of New York at Buffalo, and Northeast Structural Genomics ConsortiumBuffaloUSA
  2. 2.Center of Advanced Biotechnology and Medicine and Department of Molecular Biology and Biochemistry, RutgersThe State University of New Jersey and Northeast Structural Genomics ConsortiumPiscatawayUSA
  3. 3.Department of Biochemistry, Robert Wood Johnson Medical SchoolUMDNJPiscatawayUSA

Personalised recommendations