Journal of Structural and Functional Genomics

, Volume 13, Issue 4, pp 227–232 | Cite as

Pitfalls in the interpretation of structural changes in mutant proteins from crystal structures

  • P. R. Pokkuluri
  • X. Yang
  • Y. Y. Londer
  • M. Schiffer


PpcA is a small protein with 71 residues that contains three covalently bound hemes. The structures of single mutants at residue 58 have shown larger deviations in another part of the protein molecule than at the site of the mutation. Closer examination of the crystal packing has revealed the origin of this unexpected structural change. The site of mutation is within Van der Waals distance from another protein molecule related by a crystallographic twofold axis within the crystal. The structural changes occurred at or near the mutation site have led to a slight adjustment of the surface residues in contact. The observed deviations between the native and the mutant molecular structures are derived from the new crystal packing even though the two crystals are essentially isomorphous. Without careful consideration of the crystal lattice a non-expert looking at only the coordinates deposited in the Protein Data Bank could draw erroneous conclusion that mutation in one part of the molecule affected the structure of the protein in a distant part of the molecule.


Crystal contacts Crystal packing effects Cytochrome c7 Geobacter sulfurreducens Single mutant structures Structural changes 



Desulfuromonas acetoxidans


Geobacter sulfurreducens


Nuclear magnetic resonance


Protein Data Bank


Periplasmic cytochrome A


Root mean square deviation


  1. 1.
    Lloyd JR, Leang C, Hodges Myerson AL, Coppi MV, Cuifo S, Methe B, Sandler SJ, Lovley DR (2003) Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens. Biochem J 369:153–161PubMedCrossRefGoogle Scholar
  2. 2.
    Pokkuluri PR, Londer YY, Duke NEC, Long WC, Schiffer M (2004) Family of cytochrome c 7-type proteins from Geobacter sulfurreducens. The structure of one cytochrome c 7 at 1.45 Å resolution. Biochemistry 43:849–859PubMedCrossRefGoogle Scholar
  3. 3.
    Pokkuluri PR, Londer YY, Yang X, Duke NE, Erickson J, Orshonsky V, Johnson G, Schiffer M (2010) Structural characterization of a family of cytochromes c 7 involved in Fe(III) respiration by Geobacter sulfurreducens. Biochim Biophys Acta 1797:222–232PubMedCrossRefGoogle Scholar
  4. 4.
    Morgado L, Paixao VB, Schiffer M, Pokkuluri PR, Bruix M, Salgueiro CA (2012) Revealing the structural origin of the redox-Bohr effect: the first solution structure of a cytochrome from Geobacter sulfurreducens. Biochem J 441:179–187PubMedCrossRefGoogle Scholar
  5. 5.
    Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49:219–286PubMedCrossRefGoogle Scholar
  6. 6.
    Lovley DR (2008) Extracellular electron transfer: wires, capacitors, iron lungs, and more. Geobiology 6:225–231PubMedCrossRefGoogle Scholar
  7. 7.
    Assfalg M, Banci L, Bertini I, Bruschi M, Turano P (1998) 800 MHz 1H NMR solution structure refinement of oxidized cytochrome c 7 from Desulfuromonas acetoxidans. Eur J Biochem 256:261–270PubMedCrossRefGoogle Scholar
  8. 8.
    Assfalg M, Banci L, Bertini I, Bruschi M, Giudici-Orticoni MT, Turano P (1999) A proton-NMR investigation of the fully reduced cytochrome c 7 from Desulfuromonas acetoxidans: comparison between the reduced and the oxidized forms. Eur J Biochem 266:634–643PubMedCrossRefGoogle Scholar
  9. 9.
    Czjzek M, Arnoux P, Haser R, Shepard W (2001) Structure of cytochrome c 7 from Desulfuromonas acetoxidans at 1.9 Å resolution. Acta Crystallogr D 57:670–678PubMedCrossRefGoogle Scholar
  10. 10.
    Matias PM, Frazao C, Morais J, Coll M, Carrondo MA (1993) Structure analysis of cytochrome c 3 from Desulfovibrio vulgaris Hildenborough at 1.9 Å resolution. J Mol Biol 234:680–699PubMedCrossRefGoogle Scholar
  11. 11.
    Londer YY, Pokkuluri PR, Tiede DM, Schiffer M (2002) Production and preliminary characterization of a recombinant triheme cytochrome c 7 from Geobacter sulfurreducens in Escherichia coli. Biochim Biophys Acta 1554:202–211PubMedCrossRefGoogle Scholar
  12. 12.
    Arslan E, Schulz H, Zufferey R, Kunzler P, Thöny-Meyer L (1998) Overproduction of the Bradyrhizobium japonicum c-type cytochrome subunits of the cbb 3 oxidase in Escherichia coli. Biochem Biophys Res Commun 251:744–747PubMedCrossRefGoogle Scholar
  13. 13.
    Otwinowski Z, Minor W (1997) Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326CrossRefGoogle Scholar
  14. 14.
    Brünger AT, Adams PD, Clore GM, Delano WL, Gros P, Grosse-Kunstleve RW, Jiang J-S, Kuszewski J, Nigles M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D 54:905–921PubMedCrossRefGoogle Scholar
  15. 15.
    Sack JS (1988) CHAIN—A crystallographic modeling program. J Mol Graph 6:224–225CrossRefGoogle Scholar
  16. 16.
    Murshudov GN, Vagin AA, Lebedev A, Wilson KS, Dodson EJ (1999) Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallogr D 55:247–255PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • P. R. Pokkuluri
    • 1
  • X. Yang
    • 1
  • Y. Y. Londer
    • 1
    • 2
  • M. Schiffer
    • 1
  1. 1.Biosciences DivisionArgonne National LaboratoryLemontUSA
  2. 2.New England BiolabsIpswichUSA

Personalised recommendations